
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING,  VOL.  24,  NO.  11,  NOVEMBER  1998 927

Using Abstraction and Model Checking
to Detect Safety Violations

in Requirements Specifications
Constance Heitmeyer, James Kirby, Jr., Bruce Labaw, Myla Archer, and Ramesh Bharadwaj

Abstract—Exposing inconsistencies can uncover many defects in software specifications. One approach to exposing
inconsistencies analyzes two redundant specifications, one operational and the other property-based, and reports discrepancies.
This paper describes a “practical” formal method, based on this approach and the SCR (Software Cost Reduction) tabular notation,
that can expose inconsistencies in software requirements specifications. Because users of the method do not need advanced
mathematical training or theorem proving skills, most software developers should be able to apply the method without extraordinary
effort. This paper also describes an application of the method which exposed a safety violation in the contractor-produced software
requirements specification of a sizable, safety-critical control system. Because the enormous state space of specifications of
practical software usually renders direct analysis impractical, a common approach is to apply abstraction to the specification. To
reduce the state space of the control system specification, two “pushbutton” abstraction methods were applied, one which
automatically removes irrelevant variables and a second which replaces the large, possibly infinite, type sets of certain variables
with smaller type sets. Analyzing the reduced specification with the model checker Spin uncovered a possible safety violation.
Simulation demonstrated that the safety violation was not spurious but an actual defect in the original specification.

Index Terms—Requirements, specification, abstraction, model checking, formal methods, verification, safety analysis, simulation,
consistency checking, SCR.

——————————���F���——————————

1 INTRODUCTION

IVEN the high frequency of defects in software re-
quirements specifications [64], the huge cost of cor-

recting the defects late in development [12], [23], and the
serious accidents they may cause [52], techniques for the
early detection and removal of defects from software re-
quirements specifications are crucial. Exposing inconsisten-
cies can uncover many classes of defects in requirements
specifications. One technique called consistency checking
finds inconsistencies between different parts of a specifica-
tion or between a specification and a formal model de-
scribing the information required in the specification [32].
Examples of such inconsistencies include type errors,
missing cases, and circular definitions. Applying a second
technique called simulation can detect a different class of
inconsistencies—inconsistencies between a user’s notion of
the required system behavior and the system behavior
captured by the requirements specification [34], [35].

A formal requirements method called SCR (Software
Cost Reduction) is designed to expose such inconsistencies
in requirements specifications. Since its introduction in
1978, [38], [39], [1], the SCR requirements method has been
applied successfully to a broad range of critical systems,

including avionics systems [57], [24], [58], space systems
[21], telephone networks [40], and control systems for nu-
clear power plants [60]. To support the SCR method, we
have developed a set of software tools for specifying and
analyzing software requirements [32], [34], [35], [36]. In ad-
dition to a specification editor for creating and modifying a
requirements specification and a dependency graph browser to
display the dependencies among the variables in the speci-
fication, the toolset contains tools that expose inconsisten-
cies. These include an automated consistency checker, which
detects type errors, missing cases, circular definitions, and
other types of application-independent errors, and a simula-
tor, which allows users to symbolically execute the specifi-
cation to ensure that it captures their intent.

In addition to consistency checking and simulation, one
may apply a third technique to expose inconsistencies. This
technique compares two different specifications of the re-
quired behavior, one operational and the other property-
based, and uses a formal analysis tool, such as a model
checker, to detect discrepancies between them. The opera-
tional (or model-based) specification describes how the sys-
tem operates, while the property-based specification de-
scribes the required system properties [59]. An operational
specification may represent the system as a state machine,
whereas a property-based specification usually expresses
properties as formulas in some logic. To detect inconsisten-
cies between an operational SCR specification and a prop-
erty-based specification, we recently integrated the explicit
state model checker Spin [41], [42] into the SCR toolset [10],
[9], [11].

0098-5589/98/$10.00 © 1998 IEEE

²²²²²²²²²²²²²²²²

•� C. Heitmeyer, J. Kirby, B. Labaw, M. Archer, and R. Bharadwaj are with the
Center for High Assurance Computer Systems, Code 5546, U.S. Naval
Research Laboratory, 4555 Overlook Ave., SW, Washington, DC 20375.
E-mail: {heitmeyer, kirby, labaw, archer, ramesh}@itd.nrl.navy.mil.

Manuscript received 15 Sept. 1997; revised 13 Mar. 1998.
Recommended for acceptance by C. Ghezzi and N. Nuseibeh.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number 107209.

G



928 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING,  VOL.  24,  NO.  11,  NOVEMBER  1998

1.1 Dual-Language Approach
The use of two redundant specifications to represent the
same required behavior is called the dual language approach
[59]. Among the operational/property-based language
pairs that have been proposed are Modechart and Real-
Time Logic [45], Timed Transition Models and Real Time
Temporal Logic [59], and Petri nets coupled with the TRIO
logic [54]. In the SCR requirements method, the operational
specification is expressed in tables and the system proper-
ties as formulas in first-order logic. Examples of the dual
language approach in SCR specifications include the A-7
requirements document [38], [1], which, in addition to the
tabular operational specification, contains properties of the
system modes, and Kirby’s cruise control specification [47],
which contains both a tabular specification of the required
system operations and a list of required system properties.

The dual language approach is useful because each
specification style has advantages: operational specifica-
tions are less likely to omit required behavior and are often
executable, whereas property-based specifications are con-
cise, abstract, and minimize implementation bias. Another
advantage of the dual language approach is that detecting
inconsistencies between two different specifications of the
same behavior is an effective technique for debugging both
the statements of the required properties and the opera-
tional specification. For example, when Dill and his col-
leagues used model checking to analyze a hardware design
for several properties of interest, they detected errors both
in the design and in the stated properties [20].

1.2 A Practical Formal Method
This paper shows how a “practical” formal method [33],
based on SCR and the dual language approach, can expose
inconsistencies in specifications of safety-critical software.
Although the SCR method has a formal basis, use of the
method does not require advanced mathematical training
or theorem proving skills, and hence most software devel-
opers should be able to apply the method without extraor-
dinary effort. The method is supported by a suite of tools,
carefully integrated to work together. The advantage of a
suite of tools is that properties shown to hold using one tool
may simplify the analysis performed with a second tool.
For example, proving with our consistency checker that a
specification is deterministic can simplify later analysis
with a model checker [11]. Further, as shown below, some
tools (e.g., a model checker and a simulator) can be used in
concert to detect inconsistencies.

A practical method should be supported by analysis
techniques that can be invoked with the mere push of a
button. One example of a “pushbutton” technique is auto-
mated consistency checking [32]. Another possible push-
button technique is model checking. A significant problem
in model checking software specifications arises, however,
because software specifications routinely contain a wide
range of variable types (including types with infinite
ranges, such as real numbers) and little regularity or sym-
metry. As a result, their state spaces are often enormous—in
many cases, infinite. Hence, before practical software speci-
fications can be analyzed with a model checker, the state
explosion problem must be addressed—i.e., the size of the
state space to be analyzed must be reduced.

A promising way to reduce state explosion in model
checking, proposed by Clarke and his colleagues in 1994, is
to apply abstraction [15]. Currently, two different ap-
proaches to constructing abstractions are used in model
checking. The first approach (and, according to some, the
most common [43]) is to develop the abstraction in ad hoc
ways—the correspondence between the abstract model and
the original specification is based on informal, intuitive ar-
guments. A second approach is mathematically sound but
requires user ingenuity to construct the abstraction (see,
e.g., [15], [27], [28]). This reliance on user ingenuity has led
some to conclude that, at least in some contexts, the use of
abstraction in model checking is impractical (see, e.g., [44]).

Our use of abstraction in model checking differs from
both of these approaches. In contrast to the first approach,
ours is guaranteed to be mathematically sound. In contrast
to the second, our abstraction methods are practical and
efficient: they automatically construct a sound and, under
certain restrictions, complete abstraction without requiring
mathematical sophistication on the part of the user. Because
our abstractions are sound and often complete, they may be
safely applied repeatedly, thus compounding the magni-
tude of the state space reductions. This can lead to huge
state space reductions.

1.3 Applying the Method
To demonstrate our method, this paper describes how its use
uncovered a violation of a critical system property in an op-
erational specification of a United States military system.
Both the property and the operational specification were
taken from a draft software requirements specification (SRS)
prepared by a military contractor. The SRS describes the re-
quired behavior of a moderately large program supporting a
Weapons Control Panel (WCP). Program officials estimate
that the WCP program will contain on the order of 15K lines
of source code. Incorrect behavior of the WCP can lead to
serious accidents, such as the premature or unintended re-
lease of a weapon, serious injury to an operator, or major
damage to a weapon. To prevent behavior that could result
in such accidents, the SRS contains precise prose descriptions
of six properties, including the critical property mentioned
above, that the WCP must satisfy to operate safely.

To apply the SCR method to the WCP SRS, we first trans-
lated the SRS into the SCR tabular notation. Then, we applied
the consistency checker and the dependency graph browser,
which automatically exposed numerous errors in the original
contractor SRS, most of which we were able to correct. Next,
we translated the six safety properties into logical formulas.
Our initial analysis of the WCP specification suggested that
checking the validity of these properties would be nontrivial,
partly because the validity of each property depends on nu-
merous variable definitions distributed throughout the speci-
fication. This fact coupled with the significant complexity of
some parts of the WCP specification suggested further that
using inspection to analyze the properties was impractical.
Hence, we applied automation—in particular, the Spin
model checker—which quickly detected an inconsistency
between the operational SCR specification and one of the
properties. Executing the scenario returned by Spin in the
SCR simulator demonstrated a safety violation that could
damage the weapons system.



HEITMEYER:  USING ABSTRACTION AND MODEL CHECKING TO DETECT SAFETY VIOLATIONS IN REQUIREMENTS SPECIFICATIONS 929

Applying the SCR tools to the WCP specification was
clearly valuable: as noted, the SCR toolset exposed a num-
ber of errors, including a serious safety violation, in the
original contractor SRS. Applying the SCR tools was also
cost-effective. Translating the SRS to the SCR notation, de-
tecting and correcting errors with the automated consis-
tency checker, and detecting and validating the safety vio-
lation required slightly more than one person-week, an ex-
tremely small effort given the large size and significant
complexity of the SRS and the fact that the military con-
tractor developed the SRS with no knowledge of the SCR
method and tools.

1.4 Contributions of the Paper
In [9], [11], we propose two abstraction methods useful in
model checking requirements specifications, demonstrate
the methods on two small examples, and describe how SCR
specifications can be translated into the languages of Spin
and the symbolic model checker SMV [56]. In [31], we de-
scribe our experiences in applying formal methods to the
WCP specification, e.g., the positive reaction to the cus-
tomized WCP simulator that we developed and the barriers
that hindered the transfer of our technology to the govern-
ment contractor. This paper gives the details of our ap-
proach to abstraction and shows how our automatable ab-
straction methods make model checking software specifi-
cations practical. We illustrate our abstraction methods by
describing our analysis of the SRS for the WCP. This paper
makes the following contributions:

•� We demonstrate our approach to “pushbutton” model
checking by showing how automatable abstraction
methods can be supported in SCR. Our approach to
abstraction has four important aspects. First, the focus
is on properties commonly found in requirements
specifications—state and transition invariants. Second,
the abstraction is constructed based on a single prop-
erty, rather than a collection of properties. Third, two
automatable abstraction techniques are applied: variable
restriction, which eliminates variables irrelevant to the
property of interest from the specification, and the vari-
able abstraction technique discussed below. Fourth, our
approach demonstrates how candidate counterexam-
ples in the original state machine can be computed
from counterexamples found in the abstract machine.

•� We introduce a technique for automating an impor-
tant special case of the variable abstraction method
proposed by Clarke et al. [15]. This technique replaces
a “detailed” variable in the original specification (that
is, a variable with a large, sometimes infinite, range of
values) with a more abstract variable. Our technique
analyzes all occurrences of particular detailed vari-
ables in a concrete SCR specification to determine
whether abstraction of the variables is possible. If so,
the technique derives the appropriate type abstrac-
tions and transforms the concrete specification into an
abstract version in which these variables are replaced
by abstract variables.

•� We introduce a theoretical framework within which we
can demonstrate the correctness of a set of abstractions
constructed automatically and in standard ways from

SCR requirements specifications. While our theory of
abstraction may be viewed as a specialization of the
very general theory developed by Loiseaux et al. [51],
our emphasis on particular automatable, computation-
ally inexpensive abstraction methods and on invariant
properties rather than properties of execution se-
quences allows us to prove general correctness proper-
ties of our abstractions within our simpler framework.
This emphasis also distinguishes our approach to ab-
straction from the approaches of Loiseaux, Clarke,
Kurshan [50], and others.

•� To demonstrate the utility of the SCR tools, we de-
scribe their application to the WCP SRS. Applying the
SCR tools to this large, contractor-produced specifica-
tion demonstrates how a relatively complete set of
automated techniques can expose inconsistencies in
software specifications. While the use of tools such as
simulators, model checkers, equivalence checkers,
and code synthesizers is becoming standard in hard-
ware design [48], suites of tools customized to expose
inconsistencies in software specifications are rare.

1.5 Summary of the Paper
Section 2 reviews the formal underpinnings of the SCR
method for requirements specification and briefly describes
recent applications of the SCR tools to practical systems. Sec-
tion 3 describes the contractor-developed SRS of the WCP,
the translation of the SRS into the SCR tabular notation, and
the application of the consistency checker and the depend-
ency graph browser to the WCP specification. Section 4
summarizes our theory of abstraction, reviews the two ab-
straction methods described in [11], and introduces the vari-
able abstraction technique mentioned above. Section 5 shows
how this technique and another abstraction method were
used to dramatically reduce the state space of the state ma-
chine model that underlies the original SRS for the WCP. (Be-
cause the WCP specification includes numerous real-valued
variables, the state space of the WCP specification is infinite.)
Section 5 also describes our use of Spin to detect a safety
violation in the reduced model and the use of the SCR simu-
lator to demonstrate the violation in the complete SCR speci-
fication. Section 6 discusses several issues, such as the role of
redundancy in requirements specifications, criteria useful in
selecting an analysis technique to detect inconsistencies, and
how our abstraction methods can be used with methods
other than SCR. Section 7 describes related work. Finally,
Section 8 presents some conclusions.

2 THE SCR REQUIREMENTS METHOD:
BACKGROUND

The tabular-based SCR method was formulated in 1978 to
specify the requirements of the Operational Flight Program
(OFP) of the United States Navy’s A-7 aircraft [38], [39].
During the ‘80s and the early ‘90s, many organizations in
industry, including Bell Laboratories [40], Grumman [57],
Ontario Hydro [60], and Lockheed [25], applied the SCR re-
quirements method to practical systems. The largest applica-
tion of SCR to date occurred in 1993-1994 when engineers at
Lockheed used a version of SCR called CoRE [24] to specify



930 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING,  VOL.  24,  NO.  11,  NOVEMBER  1998

the complete requirements of the OFP of Lockheed’s C-130J
aircraft [25], a program containing approximately 230K lines
of Ada code [63]. The sizable C-130J requirements specifica-
tion, which contains more than 1,000 tables, provides strong
evidence that the SCR method scales.

Each of the above applications of SCR had, at most,
weak tool support. To provide powerful, robust tool sup-
port customized for the SCR method, we have developed
the SCR toolset. To provide formal underpinnings for the
the method, we have developed a formal model which de-
fines the semantics of SCR requirements specifications [37],
[32]. Below, we review the SCR requirements model and
then briefly describe three pilot projects in which other
groups used the SCR tools to analyze requirements specifi-
cations of safety-critical systems. For more details about the
SCR model, see [32], [9], [11].

2.1 SCR Requirements Model
An SCR requirements specification describes the required
relation between the system environment, which is nonde-
terministic, and the required system behavior, which is
usually deterministic [32], [37]. The system environment
contains monitored quantities, quantities that the system
monitors, and controlled quantities, quantities that the sys-
tem controls. The SCR model represents these environ-
mental quantities as monitored and controlled variables. The
environment nondeterministically produces a sequence of
input events, where an input event is a change in some
monitored quantity. The system, represented in the formal
model as a state machine, begins execution in some initial
state and then responds to each input event in turn by
changing state and by possibly producing one or more out-
put events, where an output event is a change in a controlled
quantity. In SCR, the system behavior is assumed to be syn-
chronous (similar to Esterel’s Synchrony Hypothesis [7]):
the system completely processes one input event before
processing the next input event.

In SCR, the required system behavior is described by NAT
and REQ, two relations of the Four Variable Model [61]. NAT
describes the constraints imposed by physical laws and the
system environment. REQ describes the required relation
between the monitored and the controlled variables that the
system must enforce. To specify REQ concisely, SCR specifi-
cations use two types of auxiliary variables, mode classes,
whose values are called modes, and terms. In many cases,
mode classes and terms capture historical information.

In our requirements model, a system S is represented as
a 4-tuple, S = (S, S0, E

m, T ), where S is the set of states, S0 µ
S is the initial state set, Em is the set of input events, and T is
the transform describing the allowed state transitions. In
the initial version of the SCR formal model, the transform T
is deterministic, i.e., a function that maps an input event
and the current state to a (unique) new state. Each transi-
tion from one state to the next state is called a state transition
or, alternately, a step. To compute the next state, the trans-
form T composes smaller functions, called table functions,
which are derived from the condition tables, event tables,
and other tables that comprise an SCR requirements speci-
fication using the semantics in [32], [37]. These tables de-
scribe the values of the dependent variables—the controlled

variables, the mode classes, and the terms. Our formal
model requires the information in each table to satisfy cer-
tain properties. These properties guarantee that each table
describes a total function.

The SCR requirements model includes a set RF = {r1, r2,
¤, rn} containing the names of all state variables (i.e., the
monitored and dependent variables) in a given specifica-
tion and a function TY which maps each variable to its set
of legal values. In the model, a state s is a function that
maps each variable in RF to its value; i.e., for all r ¶ RF, s(r)
¶ TY(r). A condition is a predicate defined on a system state,
whereas an event is a predicate defined on two system
states that differ in the value of at least one variable. When
the value of a variable (or a condition) changes from one
state to the next, we say that an event “occurs.” The nota-
tion “@T(c),” which denotes an event, is defined by

@ T( )c c c= ¬ ∧ ′∆

where the unprimed condition c is evaluated in the old (or
current state) and the primed condition c� is evaluated in the
new (or next state). (In this paper, an unprimed variable re-
fers to the variable’s value in the current state, whereas a
primed variable refers to the variable’s value in the next
state. Analogous notation is also used to distinguish condi-
tions in the old state from conditions in the new state.) The
notation “@F(c)” is defined by @F(c) = @T(Àc). Informally,
“@T(c)” means that condition c becomes true, and “@F(c)”
means that c becomes false.

To compute the new state, the transform T uses the values
of variables in both the old state and the new state. Generally,
the value of a variable in the new state may “directly” de-
pend on the values of variables in the old state or the new
state. To define the direct dependency relation, we define a de-
pendency set ', a set of ordered pairs (x, y), where x, y ¶ RF
and (x, y) ¶ ' iff the value of y in either the old state or new
state is an argument of the function defining x [11].

To avoid circular definitions, the direct dependencies of
given variables on other variables in the same state are re-
quired to define a partial order. Because they have no de-
pendencies on other variables (they represent inputs from
the environment), the monitored variables are first in the
partial order. Because they can depend on any monitored
variable, term, or mode class, the controlled variables come
last in the partial order. The mode classes and terms come
between the monitored and controlled variables in the partial
order. The assumptions that the tables define total functions
and that the variables in RF are partially ordered guarantee
that the transform T is a function (at most one new system
state is defined) and well-defined (for each enabled input
event, at least one new system state is completely defined).

2.2 Practical Applications of the SCR Tools
Recently, the practical utility of the SCR tools for detecting
errors in software specifications has been evaluated in three
pilot projects. In one project, researchers at NASA’s IV&V
facility used the SCR consistency checker to detect several
ambiguities and missing assumptions in the prose require-
ments specification of software for the International Space
Station [21], [22]. In another project, engineers at Rockwell-
Collins used the specification editor, the consistency



HEITMEYER:  USING ABSTRACTION AND MODEL CHECKING TO DETECT SAFETY VIOLATIONS IN REQUIREMENTS SPECIFICATIONS 931

checker, and the simulator to detect 24 errors, many of them
serious, in the requirements specification of an example
flight guidance system [58]. In a third project, researchers at
the Jet Propulsion Laboratory (JPL) used the SCR consis-
tency checker and the simulator to analyze specifications of
two components of NASA’s Deep Space-1 spacecraft for
errors [53]. These components are designed to reduce the
likelihood that a single fault can lead to total or partial loss
of a spacecraft’s functions or mission-critical data.

3 SPECIFYING THE SRS FOR WCP IN SCR
3.1 The WCP and the Contractor SRS
Operators of a United States military system use the Weap-
ons Control Panel (WCP) to monitor the status and set up
the launch of one or more weapons. The WCP is linked to
numerous subsystems and I/O devices that support the
launch operation. In particular, it interacts with the LCS
Launch Control System, (LCS) which determines when one
or more weapons are to be launched and oversees launch
preparation. Operators use the panel to open and close
valves and doors and to monitor the doors, valves, and
other system devices for faults. The panel consists of lights,
numeric displays, and switches. The lights display non-
numeric sensor information (e.g., a door is open, a subsys-
tem has failed) and commands from the LCS (e.g., Make
Launcher Ready). Numeric displays present numeric in-
formation read from sensors, such as air pressure. Switches
instruct the WCP software to energize and de-energize so-
lenoids, the actuators that open and close doors and valves.

The contractor-developed SRS of the required behavior of
WCP is a semiformal document composed of formal de-
scriptions, diagrams, and prose. It describes a total of 258
variables (108 input variables, 90 output variables, and 60
internal variables), listing in tables the names, types, and
source or destination (device or subsystem) of all system in-
puts and outputs. In contrast to most other SRSs that we
have reviewed, the SRS for the WCP is highly precise and
relatively complete—it contains a precise description of most
of the information needed in a “build-to” specification. In
contrast to most requirements specifications for practical
systems, which consist largely of prose, the SRS uses formal
descriptions, in particular, a set of assignment statements,1 to
specify the values of most WCP outputs and internal vari-
ables. The remaining variables are described more infor-
mally. In particular, the Boolean outputs and internal vari-
ables that are not defined by assignment statements and all
numeric outputs are described in prose. Also described in
prose are four modes of operation (initialization, monitor,
operate, and test) and how the values of various outputs and
internal variables differ depending upon the mode (e.g., re-
lays are disabled in monitor mode). With only a few excep-
tions, the assignment statements do not refer to modes.

3.2 Translation of the SRS to SCR
The existence in the SRS of input, output, and internal vari-
ables and of assignment statements to define the output
and internal variables facilitated the translation of the SRS
into the SCR notation. The WCP inputs correspond to SCR

1. The SRS calls these logic equations. Calling them assignment statements is
more accurate.

monitored variables, the WCP outputs to SCR controlled
variables, the WCP internal variables to terms and modes,
and the WCP assignment statements to SCR tables. Because
modes were not used systematically in the SRS (as noted
above, most assignment statements ignore the modes), we
decided to follow the lead of the SRS and represent the
WCP modes as Boolean terms rather than as SCR modes.
Thus, both internal variables and modes in the SRS are rep-
resented as terms in the SCR specification, and SCR modes
are not used.

To obtain an online specification of the SRS, we elec-
tronically scanned the variable tables and the assignment
statements from the SRS into a computer file and used opti-
cal character recognition to convert the scanned images to
text. To obtain an SCR specification, we edited the text in
minor ways (e.g., removed embedded blanks from the vari-
able names) and then translated the results into SCR tables,
inserting traceability links back to the SRS.

To evaluate the SCR version of the SRS, we first invoked
the consistency checker, which automatically exposed some
type errors, a few missing cases, and numerous inconsisten-
cies in the definitions and uses of variables. Nearly all of
these errors were traced to errors in the original specification.
Due to the extensive formality of the original SRS, the accu-
racy of electronic scanning and optical character recognition,
and our limited manual effort, translating the original con-
tractor SRS into SCR had apparently introduced few new
errors. We corrected the type errors, some variable name dis-
crepancies, and other minor problems in the SCR specifica-
tion. We also defined “reasonable” initial values. (Although
the SRS generally omitted initial values, some initial values
were found in another contractor specification.) Because we
are not domain experts, we were unable to fix every error
detected by consistency checking (e.g., some unused and
undefined variables and a few missing cases). Finally, to
maintain close compatibility between the contractor SRS and
the SCR specification, we avoided making major changes in
translating the original SRS into SCR. Compatibility between
the two specifications could be important later in the project
in convincing United States government personnel and the
government contractor that problems exposed by our meth-
ods were actual problems in the SRS, not problems intro-
duced by our translation into SCR.

Translating the SRS into SCR and applying our analysis
tools reduced the total number of variables from 258 to 233.
Of the 233 variables, 74 were monitored variables (35
Booleans, nine reals, two integers, and 28 enumerated
types), 72 were terms (67 Booleans, three reals, and two
integers), and 87 were controlled variables (72 Booleans,
four reals, and 11 enumerated types). The reduction in the
number of input and output variables was due partly to the
elimination of duplicate variable names. Moreover, in many
cases, the original SRS used n Boolean variables to repre-
sent an input with n possible values. To clarify the WCP
specification and improve its readability, we modeled each
of these inputs as a single enumerated type variable with n
values, and in the process eliminated numerous Boolean
variables. The increase in the number of internal variables
(represented in SCR as terms) resulted because our earlier
informal analysis had overlooked several internal variables
in the prose portion of the contractor SRS.



932 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING,  VOL.  24,  NO.  11,  NOVEMBER  1998

Another tool in the toolset, the dependency graph
browser (DGB), displays a graph whose nodes represent all
variables in an SCR specification and whose edges indicate
the variable dependencies [35]. Fig. 1 shows the depend-
ency graph for the complete SCR specification of WCP after
the above improvements. (Fig. 1 omits the variable names
because they are unreadable.) To determine the dependency
graph, the SCR toolset uses the condition tables and event
tables to identify the variables on which each term and
controlled variable depends in both the old and new states.
The leftmost nodes represent the 74 monitored variables,
none of which depends upon other variables. The rightmost
nodes represent the 87 controlled variables, which can de-
pend on any other variables. In the middle of the graph are
nodes representing the 72 terms, each of which can depend
on monitored variables and any preceding terms in the
partial order.

Fig. 1. Dependency graph for SCR Specification of WCP.

In addition to displaying the relationship among vari-
ables, the dependency graph also exposes unused variables,
undefined variables, and circular dependencies. (The con-
sistency checker also exposes such errors.) For example,
nine unused monitored variables appear in the bottom left-

hand corner and one undefined output variable in the bot-
tom right-hand corner of Fig. 1. These 10 unconnected vari-
ables are among the problems we were unable to correct
without more domain knowledge. In addition to displaying
the dependency graph, the DGB facilitates user navigation
of the specification. By clicking on the node that corre-
sponds to a dependent variable, the user can display the
table describing that variable. The DGB can also be used to
select and extract parts of the specification for further
analysis. Clearly, the enormous size of the dependency
graph for the WCP limits its usefulness. Using the DGB to
extract and analyze parts of the WCP specification was,
therefore, extremely valuable.

3.3 Representing the WCP Functions as Tables
In SCR, each controlled variable and term is described by
either a condition table or an event table. A condition table
describes a variable as a function of other variables in the
same state; an event table describes a variable as a function
of variables in two consecutive states. The value of a vari-
able defined by a condition table may or may not depend
on history (i.e., previous system behavior): the value of the
variable depends on history if the variable is defined in
terms of another variable whose value is history-
dependent. In contrast, the value of a variable defined by
an event table is always history-dependent.

Most assignment statements in the SRS represent the
value of an output or internal variable as a function of other
variables in the same state. Such assignments are naturally
represented in SCR with condition tables. For example, the
condition table in Table 1 represents the following assign-
ment statement from the SRS:
cHYDRAULIC_PRESSURE_LOW_INDICATOR :=
  mLAMP_CHECK=up or not mHYDRAULIC_OIL_PRESSURE

This table, which defines an output as a simple function of
two inputs, states that the controlled variable cHYDRAU-
LIC_PRESSURE_LOW_INDICATOR is true if mLAMP_CHECK is
up or mHYDRAULIC_OIL_PRESSURE is false, and false other-
wise. (In the tables and expressions in this section, the ini-
tial letter of each variable name indicates the class of the
variable: ‘m’ indicates a monitored variable, ‘c’ a controlled
variable, and ‘t’ a term.)

TABLE 1
CONDITION TABLE DEFINING

CHYDRAULIC_PRESSURE_LOW_INDICATOR



HEITMEYER:  USING ABSTRACTION AND MODEL CHECKING TO DETECT SAFETY VIOLATIONS IN REQUIREMENTS SPECIFICATIONS 933

The remaining assignment statements in the SRS define
20 Boolean variables called latches. In the SRS, most assign-
ment statements for a latch x are of the form

x := (y Â x) Á z,                                     (1)

where x is a Boolean variable and y and z are conditions
(i.e., predicates defined on the system state). Informally, the
latch x becomes true when the expression (y Á z) becomes
true, false when z becomes false, and otherwise does not
change. Because the values of latches are history-
dependent, they are represented in SCR as event tables. The
event table used to represent these latches has the form

@T(y Á z) @F(z)

x� := true false

Based on the semantics of event tables presented in [32] and
the definitions of the event operators “@T” and “@F” pre-
sented in Section 2.1, the latch x� is defined by2

′ =
′ ∧ ′ ∧ ¬ ∧

¬ ′ ∧
%
&K
'K

x
true y z y z
false z z
x

if ( )
if
otherwise.

The other assignment statements for latches are variations
of the form shown in (1) and can be similarly translated
into event tables. Two safety engineers familiar with the
WCP have confirmed our interpretation of latches.

In the SRS, a specific example of a latch is the internal
variable tPRESSURE_LATCH, which is defined by the as-
signment statement
tPRESSURE_LATCH := tPRESSURE_AUTO
                     and (mPRESSURE_HOLD or tPRESSURE_LATCH).

Table 2, which represents this assignment statement as an
event table, states that tPRESSURE_LATCH is true in the new
state if either mPRESSURE_HOLD or tPRESSURE_AUTO is
false in the old state and both mPRESSURE_HOLD and
tPRESSURE_AUTO are true in the new state, tPRES-

SURE_LATCH is false in the new state if tPRESSURE_AUTO
becomes false in the new state, and tPRESSURE_LATCH is
unchanged otherwise.

TABLE 2
EVENT TABLE DEFINING tPRESSURE_LATCH

2. In any initial state s0 ¶ S0, x, y, and z must satisfy the predicate
(x Á y Á z) Â (À x Á À z) Â (À y Á z).

Like the controlled variable defined by Table 1, many
controlled variables in the SRS (41 out of 87) are simple func-
tions of the monitored variables which do not depend on
history and hence are defined by condition tables. Most of
these 41 variables represent lights on the operator control
panel. An additional 12 controlled variables are functions of
terms and monitored variables and also do not depend on
history. These controlled variables, as well as the terms on
which they depend, are defined by condition tables. The val-
ues of the remaining 34 controlled variables are all defined in
terms of previous system behavior. Hence, these variables are
either defined by event tables or are functions of one or more
terms defined by event tables. These 34 controlled variables,
the source of most of the complexity in the WCP SRS, repre-
sent the states of valves, doors, shutters, and other hardware
devices involved in preparing the launch of a weapon.

An SCR specification is designed to describe the required
behavior without implementation detail. Whether to remove
implementation detail in the original SRS from the SCR
specification was an issue. In a few cases, we deviated
slightly from the SRS and removed the detail, substituting an
equivalent representation with the same externally visible
behavior. To illustrate these cases, we consider the variable
cTEST_MODE_INDICATOR, which represents a light on the
operator control panel. The SRS represents the light as a
Boolean that depends on a flasher circuit. We decided that
the required behavior was clearer if the SCR specification
omitted the flasher circuit and therefore represented the light
as an enumerated type with three values—off, on, and
flash—rather than two—off and on. Table 3, the condition
table which defines cTEST_MODE_INDICATOR, states that the
light is on when the switch mLAMP_CHECK is up, off when
the mLAMP_CHECK switch is down and the system is not in
tTEST_MODE, and flash when the mLAMP_CHECK switch is
down and the system is in tTEST_MODE.

TABLE 3
CONDITION TABLE DEFINING cTEST_MODE_INDICATOR

3.4 Representing the WCP Inputs in SCR
In SCR, the behavior of a monitored variable is represented
as a simple state machine with a set of possible states (de-
fined by the “type-of” function TY), a next-state relation,
and an initial state set. For example, the monitored variable
mLAMP_CHECK, which indicates the position of a switch, has
the set of possible values {up, down}, the next-state relation
{(down, up), (up, down)}, and the initial value down. Simi-
larly, the monitored variable mBANK_SWITCH_MODE, which
indicates the position of a dial, has the set of possible values
{off, monitor, operate}, the next-state relation {(off,
monitor), (monitor, operate), (operate, monitor),



934 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING,  VOL.  24,  NO.  11,  NOVEMBER  1998

(monitor, off)}, and the initial value off. Note that the
user cannot rotate the dial directly from off to operate or
vice versa.

Like many other researchers (e.g., [59], [55], [42]), we use
an interleaving model: If two monitored quantities change
simultaneously, the SCR model represents the changes as
two input events that are processed in sequence in either
order. In SCR, interleaving is captured by the One Input
Assumption—at each state transition, exactly one moni-
tored variable changes. In the WCP specification, therefore,
we assume that, at each transition, either mLAMP_CHECK or
mBANK_SWITCH_MODE or one of the 72 remaining monitored
variables changes. If mLAMP_CHECK changes, it can only
change in one way—from down to up or vice versa. In con-
trast, if mBANK_SWITCH_MODE changes, it may change in
more than one way; for example, starting in the position
monitor, it may change to off or to operate.

3.5 Computing the WCP Transitions in SCR
Analyzing and simulating SCR specifications requires that
the semantics of state transitions be defined. As noted
above, the transform T computes the new state from an
enabled input event and the current state. The current state
and the next-state relations of the monitored variables de-
termine which input events are enabled. Once one of the
enabled input events is selected, the new state can be com-
puted from the selected input event, the current state, and
the functions (derived from the SCR tables) that define the
values of the dependent variables. To represent these func-
tions and the next-state relations of the monitored variables,
reference [9] introduced “conditional assignments,” which
are similar to the enumerated assignments of UNITY [14].
Below, we give conditional assignments for the dependent
variables described by Tables 2 and 3 and for the next-state
relation associated with the monitored variable
mBANK_SWITCH_MODE. We also describe how we use condi-
tional assignments to compute the next state.

Each variable ri in an SCR specification is associated with
a conditional assignment of the form:

if

fi

h

h

h

g r v

g r v

g r v

i i i

i i i

i n i i ni i

, ,

, ,

, ,

:

:

:

1 1

2 2

→ =
→ =

→ =
M

Here, the gi j,  are Boolean expressions (guards) and the vi j,
are expressions that are type compatible with variable ri.
The gi j,  and the vi j,  may refer to both old and new values
of r variables, provided that the references do not lead to
circular definitions [37], [32].

The conditional assignment for the term tPRES-
SURE_LATCH, which can be derived from the event table in
Table 2 using the semantics in [32], [37] is given by

if
u @T(mPRESSURE_HOLD AND tPRESSURE_AUTO)

-> tPRESSURE_LATCH := true
u @F(tPRESSURE_AUTO)

-> tPRESSURE_LATCH := false
fi

Similarly, the conditional assignment for the controlled
variable cTEST_MODE_INDICATOR is derived from the con-
dition table in Table 3 using the semantics in [32], [37] and
is given by

if
u NOT(mLAMP_CHECK=up OR tTEST_MODE)

-> cTEST_MODE_INDICATOR := off
u mLAMP_CHECK=up

-> cTEST_MODE_INDICATOR := on
u tTEST_MODE AND NOT(mLAMP_CHECK=up)

-> cTEST_MODE_INDICATOR := flash
fi

As stated in Section 2.1, the information in the SCR tables
must satisfy the properties described in [32]. For example,
in a condition table, two properties are required of the con-
ditions ci in each row: the disjunction of the ci must be true,
and the pairwise conjunction of the ci must be false. In an
event table, the pairwise conjunction of the events in each
row must be false.

These and other properties required of condition tables
and event tables guarantee that, at each transition, either
one guard or no guard of the conditional assignment for a
dependent variable will be true. The properties given above
for condition tables guarantee that in the conditional as-
signment derived from a condition table, exactly one guard
will be true at each transition. Similarly, the property given
above for event tables and the assumption that events
which never change the value of the variable defined by the
event table are omitted imply that in the conditional as-
signment derived from an event table, either one guard or
no guard will be true at each transition. If one guard is true,
then the assignment associated with that guard is selected;
if no guard is true, then the variable value is left un-
changed.

The conditional assignment for the monitored variable
mBANK_SWITCH_MODE is given by

if
u mBANK_SWITCH_MODE=off

-> mBANK_SWITCH_MODE := monitor
u mBANK_SWITCH_MODE=monitor

-> mBANK_SWITCH_MODE := operate
u mBANK_SWITCH_MODE=monitor

-> mBANK_SWITCH_MODE := off
u mBANK_SWITCH_MODE=operate

-> mBANK_SWITCH_MODE := monitor
fi

This conditional assignment states, for example, that starting
in the current state in the off position, mBANK_SWITCH_MODE
is enabled to change to monitor in the next state, whereas
starting in the current state in the monitor position,
mBANK_SWITCH_MODE is enabled to change to either off or to
operate in the next state. Conditional assignments for
mLAMP_CHECK and other monitored variables in the WCP
specification are expressed similarly. (In the case of real-
valued variables and other variables with very large type
sets, we use an alternate, more compact representation, based
on a predicate rather than a conditional assignment. See [11]
for an example.) For each monitored variable, more than one
guard of the corresponding conditional assignment may be
true at a given transition, and each assignment associated
with a true guard is enabled.



HEITMEYER:  USING ABSTRACTION AND MODEL CHECKING TO DETECT SAFETY VIOLATIONS IN REQUIREMENTS SPECIFICATIONS 935

Because the WCP SRS does not constrain the manner in
which most monitored variables change at each transition,
most WCP monitored variables are enabled to change to
any other value in their type sets. The disadvantage of this
approach is that “impossible” transitions may occur. For
example, often a monitored variable with numerical values
cannot assume a value below some minimum in one state
and above some maximum in the next state. However, to
minimize the differences between the original SRS and the
SCR specification, we allowed such behavior. This means
that some property violations detected by model checking
may be spurious because the changes in monitored vari-
ables that produce them are impossible.

Given a current state and the conditional assignments
for all input variables, the set of input events that are en-
abled in the current state can be determined by evaluating
each guard. Each guard that evaluates to true, along with
the associated assignment, determines an input event that
is enabled to occur in the next state. Because only a single
input event can occur at each transition, one of the enabled
input events is selected nondeterministically by the envi-
ronment. As noted above, the selected input event and the
current state determine a unique new state. The values of
the monitored variables in the new state are determined
solely by the input event; the values of the other variables
in the new state (the dependent variables) can be computed
from the conditional assignments for these variables. The
partial order of the variables (described in Section 2.1) de-
termines the sequence in which the conditional assignments
are evaluated to compute the new state.

3.6 Representing the Safety Properties in SCR
To illustrate the six safety properties in the SRS, we con-
sider two of these properties. Property 1 states,

“Opening the Launcher Vent Valve shall be prevented un-
less the weapon-to-launcher differential pressure is within
safe limits.”

More specifically, the vent valve shall open only if at least
one of two transducers reports a value in a “safe region” in
the new state. Property 2 states,

“When the launcher receives the LCS Pressure Hold signal,
the Pressurize Valve shall shut, and the Pressure Vent
Blocking Valve shall open.”

Formal statements of these two properties are given by

1)�@T(cVENT_SOLENOID) Æ
kMinTRANS < mTRANS_A� Á mTRANS_A� < kMaxTRANS Â
kMinTRANS < mTRANS_B� Á mTRANS_B� < kMaxTRANS

and
2)�@T(mPRESSURE_HOLD) Æ cPRESSURIZE_SOLENOID� Á

NOT(cPRESSURE_VENT_BLOCKING_SOLENOID�).
In Property 1, mTRANS_A and mTRANS_B represent the two
transducers, and kMinTRANS and kMaxTRANS represent the
constants 7.7 and 15.3. Translating the prose versions of the
safety properties into logical formulas required consultation
with safety engineers familiar with WCP. The property-based
specification of WCP, which consists of these six safety prop-
erties, appears in an Assertion Dictionary, one of several dic-
tionaries in an SCR specification. Fig. 2 shows how the two
above properties appear in the SCR specification of WCP.

Like the other four properties in the contractor SRS, Prop-
erties 1 and 2 describe a required relation between the
monitored and controlled variables, that is, a required con-
straint on the externally observable WCP behavior. Because
each of the six controlled variables that appear in the six
properties is a function of many terms and monitored vari-
ables, evaluating the validity of a property requires the
analysis of execution sequences involving a large number of
terms and environmental variables. For example, checking
the validity of Property 1 requires the analysis of execution
sequences involving 55 variables—20 monitored variables, 34
terms, and one controlled variable. Checking the validity of
the other five properties requires the analysis of execution
sequences containing 18, 40, 41, 53, and 56 variables, respec-
tively. Because the number of variables involved in analyzing
each property is so large and because the values of many of
the relevant variables depend on history, the use of inspec-
tion to check the WCP specification (even the SCR version)
for property violations would be error-prone and extremely
time-consuming. Clearly, automated analysis, if feasible, is a
more cost-effective approach than inspection for detecting
property violations in the WCP specification.

Fig. 2. Assertion dictionary showing two WCP properties.



936 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING,  VOL.  24,  NO.  11,  NOVEMBER  1998

4 BUILDING ABSTRACTIONS OF SCR
SPECIFICATIONS

The properties analyzed with model checking may be rep-
resented as logical formulas. In analyzing SCR specifica-
tions, we focus on state invariants (properties of reachable
states) and transition invariants (properties of adjacent pairs
of reachable states) because they are common in specifica-
tions of practical systems that we have studied, e.g., the A-7
OFP [1] and the WCP. All six properties in the WCP SRS,
including the two properties listed above, are transition
invariants. (Also interesting to note is that all properties of
the TCAS II requirements specification [30] analyzed by
Anderson et al. [2], except one designed to expose circular
definitions,3 are state invariants.)

Numerous techniques have been proposed to combat
state explosion in model checking (see, e.g., [26]). One
promising yet relatively unexplored approach uses abstrac-
tion. Below, we describe three methods for deriving abstrac-
tions from SCR requirements specifications based on the
formula to be analyzed. The first two methods were origi-
nally proposed in [10] and are further developed in [9], [11].
All three methods are practical: None requires significant
ingenuity on the user’s part, and each can be used to derive a
smaller, more abstract specification automatically or semi-
automatically. Further, each method systematizes techniques
that current users of model checkers apply routinely but of-
ten in ad hoc ways. The first method always yields a sound
and complete abstraction. (The soundness and completeness
of abstractions are defined formally in Definition 3 below.)
The remaining two methods always yield a sound abstrac-
tion and, under certain simple restrictions that frequently
hold in practice, also produce complete abstractions.

This section first presents a formal framework for ab-
straction, taken from [3], which establishes some notation
and defines soundness and completeness precisely. The
section concludes with a detailed description of the three
abstraction methods.

4.1 Formal Framework for Abstraction
Presented below is the formal framework within which we
deduce and describe properties of our abstraction methods.
First, we define a state machine, state and transition invari-
ants, soundness and completeness, and an abstraction map.
Then, Theorem 1 establishes sufficient conditions for ab-
stractions to be sound or complete.

DEFINITION 1. (State Machine). A state machine is a triple S =
(S, Q, r), where: 1) the set S of states of S is nonempty, 2)
the initial state predicate Q : [S � Boolean] of S is true
for at least one element of S, and 3) the predicate r : [S � S
� Boolean] describes the transition relation of S. When S
= (S, Q, r) is a state machine, the states that satisfy Q are
called the initial states of S and the pairs of states (s, s�)
that satisfy r are called the transitions of S. A state of S is
reachable if it can be reached by a finite sequence of transi-
tions from an initial state. A transition of S is reachable if
it is a transition from a reachable state.

3. In contrast to Anderson et al. [2], who use model checking to check for
circular definitions, the SCR method uses consistency checking [30], a form
of static analysis. The use of static analysis to detect circularities is possible
because SCR’s step semantics is much simpler than the step semantics of
RSML [30], the Statecharts variant used to specify TCAS II.

The properties of S of interest to us are either one-state or
two-state properties; these are defined, respectively, by
predicates on single states or on pairs of states. A one-state
(respectively, two-state) property is a state invariant (respec-
tively, transition invariant) if it is true for all reachable states
(respectively, true for all reachable transitions). In SCR ap-
plications, the states are represented as mappings from state
variables to values, and predicates are given by formulas
over the state variables of one or two states.

DEFINITION 2 (Machine Abstraction and Sound Predicate
Abstraction). Let S = (S, Q, r) and SA = (SA, QA, rA) be
state machines.

1)�SA is a (machine) abstraction of S if there is a map a : S
� SA, s sAa

α
, called the abstraction map, such that a)

for all s in S: Q(s) implies QA(sA) and b) for all s, s� in S:
r(s, s�) implies rA(sA, s�A). If SA is an abstraction of S un-
der a, the map a : S � SA is a machine homomor-
phism from S to SA.

2)�If q and qA are one-state (respectively, two-state) predi-
cates for S and SA and a : S � SA, s sAa

α
, is a map,

then qA is a sound predicate abstraction of q under a
if for all s in S, qA(sA) implies q(s) (respectively, for all s,
~s  in S, qA(sA, ~sA ) implies q(s, ~s )).

DEFINITION 3 (Sound/Complete Abstractions). (SA, qA) is a
sound abstraction for (S, q) if whenever qA is an invari-
ant for SA, q is an invariant for S; (SA, qA) is a complete
abstraction for (S, q) if it is a sound abstraction and it is
also a refutation-sound abstraction, i.e., whenever q is an
invariant for S, qA is an invariant for SA.

Clearly, any abstraction map a from S to SA defines an
equivalence relation ¢a on the states of S in which two
states are equivalent if they have the same image under a.
We say that a predicate q on the elements of a set S, on
which there is an equivalence relation ¢, respects ¢ (and vice
versa) if and only if the truth of q depends only on the
equivalence class(es) of its argument(s).

THEOREM 1 (Soundness and Completeness of Abstractions).
Suppose SA = (SA, QA, rA) is an abstraction of S = (S, Q, r)
with abstraction map a : S � SA, i.e., a is a machine homo-
morphism from S to SA.

1)�If qA is a sound predicate abstraction of q under a, then
(SA, qA) is a sound abstraction for (S, q).

2)�Suppose that every state $s  ¶ SA reachable in SA is the
image under a of some state s ¶ S that is reachable in S
(i.e., $ ( ))s s= α . Then, if the predicate q is a one-state
predicate for S that respects ¢a and the predicate qA on
SA is defined by q sA($) =

∆
 $s ¶ S : a (s) = $s  Á q(s), then q

is a state invariant of S iff qA is a state invariant of SA.
That is, (SA, qA) is a complete abstraction of (S, q).

3)�Suppose that every reachable transition ($, $ )s s′  of SA is
the image under a of a reachable transition (s, s�) of S
(i.e., α α( ) $ ( ) $ )s s and s s= ′ = ′ . Then, if the predicate q
is a two-state predicate for S that respects ¢a and the



HEITMEYER:  USING ABSTRACTION AND MODEL CHECKING TO DETECT SAFETY VIOLATIONS IN REQUIREMENTS SPECIFICATIONS 937

predicate qA on SA � SA is defined by q s sA($ , $ )1 2 =
∆

 $s1, s2

¶ S : a (s1) = $ ( ) $ ( , )s s s q s s1 2 2 1 2∧ = ∧α , then q is a
transition invariant of S iff qA is a transition invariant
of SA. That is, (SA, qA) is a complete abstraction of (S,
q).

Based on Definition 3 and Theorem 1, we have estab-
lished the soundness, and sufficient conditions for com-
pleteness, of abstractions of SCR specifications obtained by
three specific methods. These methods include the two
methods originally proposed in [10] and further developed
in [9], [11] and a new third method introduced below. The
complete formal exposition of the above framework, in-
cluding the proof of Theorem 1 and a detailed discussion of
the connection between our theoretical results and the three
abstraction methods, is presented in [3].

To define the state machine S = (S, Q, r) corresponding to
an SCR machine represented as a 4-tuple (S, S0, Em, T), we
define: 1) the initial-state predicate Q on a state s ¶ S such
that Q(s) is true iff s ¶ S0 and 2) the next-state predicate r on
pairs of states s, s� ¶ S such that r (s, s�) is true iff there exists
an event e ¶ Em enabled in s such that T(e, s) = s�. Thus, the
predicate r is simply a concise and abstract way of ex-
pressing the transform T without reference to events.

4.2 Three Abstraction Methods
The first two abstraction methods use variable restriction:
they eliminate certain variables and their associated tables
(or monitored variable definitions) from the SCR specifica-
tion. The third abstraction method, developed in this study
to transform an infinite state space into a finite state space,
uses variable abstraction, which replaces a detailed variable
with a more abstract variable. Thus, the third abstraction
method applies the method suggested by Clarke et al. [15]
to SCR specifications. Our abstraction methods are com-
plementary. The first method reduces the state space of the
model by removing variables irrelevant to the analysis from
the specification, whereas the two other methods reduce the
state space by either removing detailed variables or by re-
placing detailed variables with more abstract variables.
Usually, we apply the first abstraction method first and
then apply the second or third abstraction methods to the
result. Both the second and third abstraction methods may
be applied many times, each time to remove one or more
detailed variables (in the case of the second method) or to
replace detailed variables (in the case of the third method).

4.3 Method 1—Remove Irrelevant Variables
This simple abstraction method, analogous to a technique
called “program slicing” which removes irrelevant variables
in analyzing programs [65], uses the set of variable names
which occur in the formula being analyzed to remove un-
needed variables and their definitions (tables in the case of
dependent variables) from the analysis. To apply this method
to an SCR specification S with state variable set RF, we con-
struct the set 2 µ RF of variables occurring in the formula q.
Then, we let set 2∗  µ RF be the reflexive and transitive clo-
sure of 2 under the direct dependency relation '�

The SCR specification of the abstract machine SA with
the set of variables RFA = 2∗  is obtained by deleting all as-

sociated tables (and, in the case of monitored variables, all
associated definitions) for variables in the set RF - RFA. The
abstract property qA is syntactically identical to property q,
but because it is defined over a projection of the domain
over which q is defined, we call it qA. The abstraction map a
maps every state s of S to the unique state sA of SA such that
sA(r) = s(r) for all r ¶ RFA. This abstraction method is always
sound and complete. In large specifications, applying this
method can significantly reduce the size of the state space
to be model checked.

4.4 Method 2—Remove Detailed Monitored Variable
Suppose that r ¶ RF is a monitored variable which does not
appear in the formula q, that $r RF∈  depends directly only
on r, and that $r  is the only variable that directly depends on
r. We define the set of variables of the abstract machine as
RFA = RF - {r}. That is, we simply remove r from the set of
variables. In SA, the dependence of $r  on r is eliminated by
treating $r  as a monitored variable. The initial state set, the set
of possible states, and the next-state relation for the new
monitored variable $r —that is, the state machine for $r —can
be computed from $r ’s initial state set, the table defining $r ,
and the state machine for r from S. We can generalize this
method to eliminate many input variables r1, r2, ¤, rm from
RF. This reduction can be performed if $r  is the only variable
that directly depends on r1, r2, ¤, rm; $r  depends directly only
on r1, r2, ¤, rm; and none of the variables r1, r2, ¤, rm appear
in q. As for Method 1, the abstract property qA for Method 2
is syntactically identical to property q. The abstraction map a
for Method 2 is defined exactly as in Method 1.

Abstractions obtained by this method are always sound.
A sufficient condition for completeness, which frequently
holds in practice, is that every two states equivalent under
¢a must be connected by a finite chain of transitions. For
example, this condition holds when the value of $r  is deter-
mined by whether r belongs to some particular interval,
and the next-state relation of r permits r to change from any
value in any particular interval to any other value in the
same interval, either in a single step or in incremental steps
inside the interval. This sufficient condition guarantees that
every reachable abstract state or transition is the image of a
reachable concrete state or transition, so that Theorem 1
applies. For a detailed example which illustrates Method 2,
see [9], [11].

4.5 Method 3—Replace Detailed Variable with
Abstract Variable

Suppose r ¶ RF is a detailed variable (r may or may not
appear in the formula q). Based on q and the details in the
SCR specification that determine the next-state relation, one
can partition TY(r), the type set of r, into equivalence
classes A1, A2, ¤, AN such that any dependence of q’s value
and the values of the variables in RF-{r} on the value of r is
only a dependence on the equivalence class Ai of the value
of r. Then, an abstract variable $r  may be constructed whose
type set TY( $r ) is in a one-to-one correspondence with these
equivalence classes. This correspondence determines a
function f : TY(r) � TY( $r ) that maps every element of TY(r)
to the element of TY( $r ) corresponding to its equivalence
class. The function f provides a way to assign a value to the



938 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING,  VOL.  24,  NO.  11,  NOVEMBER  1998

variable $r  in any state s, i.e., s( $r ) = f(s(r)). The abstract vari-
able $r can then be treated as a new state variable, the detailed
variable r can be eliminated, and $r  can be used in place of r.

The state variable set RFA of SA is (RF - {r}) < { $r }. The
function f clearly induces an equivalence relation on the
states of S; the equivalence classes correspond to the states
of SA. The initial states and transitions in SA are defined to
be those induced by the initial states and transitions in S,
thus guaranteeing that SA is an abstraction of S. The ab-
straction map a for Method 3 maps every state s of S to the
state of SA corresponding to its equivalence class induced
by f, i.e., to the unique abstract state sA of SA such that sA(~r )
= s(~r ) for all ~r  ¶ RF - {r} and sA( $r ) = f(s(r)). The equiva-
lence relation ¢a is the same as that induced by f. The for-
mula qA is obtained by deriving a formula equivalent to q
that uses $r  in place of r. The guards and the assignments in
the SCR specification for SA are obtained similarly.

Given that, by construction, q is constant on every
equivalence class of ¢a and a is a machine homomorphism,
it follows that this abstraction method is sound [3]. As with
Method 2, a sufficient condition for completeness is that
any state s in an equivalence class be reachable in a finite
number of steps from any other state ~s  in the equivalence
class. In the classes of systems we model, this condition is
often satisfied for reasons analogous to those given above
for Method 2.

4.5.1 Example
To illustrate Method 3, we show how equivalence classes
are determined for tSELECTED_TRANS, a real-valued inter-
nal variable in the SRS for WCP. One Boolean variable that
depends on tSELECTED_TRANS is the internal variable
tPRESSURIZING_LATCH. In the dependency graph shown
in Fig. 3, nodes representing the real-valued variable tSE-
LECTED_TRANS and the Boolean variable tPRESSURIZ-
ING_LATCH appear in the bottom right-hand corner. The
dependency on tSELECTED_TRANS is completely described
by the following fragment from the conditional assignment
for tPRESSURIZING_LATCH:

if
u ¤ tSELECTED_TRANS � 14.8 ¤

� tPRESSURIZING_LATCH := ¤
u ¤ tSELECTED_TRANS � 9.2 ¤

� tPRESSURIZING_LATCH := ¤

:
u ¤

� tPRESSURIZING_LATCH := ¤
fi

Suppose the detailed variable tSELECTED_TRANS has the
type set TY(tSELECTED_TRANS) = [l, u] ´ 5. (5 denotes the
real numbers.) Then, we can use the guard fragments, “tSE-
LECTED_TRANS � 14.8” and “tSELECTED_TRANS � 9.2,” to
compute a set of fixed subintervals of [l, u]. The first guard
partitions [l, u] into the subintervals [l, 14.8) and [14.8, u].
The second guard further partitions the first subinterval [l,
14.8) into [l, 9.2] and (9.2, 14.8). Thus, the set of relevant
subintervals for the new abstract variable is {K0, K1, K2},

where K0 = [l, 9.2], K1 = (9.2, 14.8), and K2 = [14.8, u]. Then,
rather than reasoning about a value of tSELECTED_TRANS
in [l, u], an infinite set of real numbers, we can reason about
an abstract variable tSELECTED_ TRANŜ , whose value rep-
resents an arbitrary value from one of three subintervals
that form a partition of [l, u].

This method replaces the value in [l, u] of the original
variable tSELECTED_TRANS with the value in {K0, K1, K2} of
the abstract variable tSELECTED_ TRANŜ . We can define a
function f that maps the value of the variable tSE-
LECTED_TRANS to its equivalence class Ki :

f s r
K s K
K s K
K s K

( ( ))
if ,
if , and
if .

=
∈
∈
∈

%
&K
'K

0 0

1 1

2 2

(tSELECTED_ TRANS)
(tSELECTED_ TRANS)
(tSELECTED_ TRANS)

More generally, f determines a partition on the set of states
S such that two states s, ~s  ¶ S are equivalent if f maps the
value of tSELECTED_TRANS in both s and ~s  to the same Ki
and if s and ~s  agree on all other variables.

4.5.2 Uses of the Abstracted Variable
An important issue is how concrete variables subject to ab-
straction by Method 3 can be used in guards and assign-
ment statements in the concrete specification and how these
guards and assignment statements can be transformed into
guards and assignment statements in the abstract specifica-
tion. Variables in the concrete specification to which we
apply Method 3 may be used only in linear expressions and
inequalities involving constants and no other variables.

In an assignment statement, a concrete variable y may be
used in two possible ways:

(1)� in a copy operation (e.g., x : = y)
(2)� in a comparison with a constant (e.g., x : =  y � 14.8)

In (1), the concrete variable x must also be subject to ab-
straction, and the type of its abstract version $x  must be com-
patible with the type of the abstract version $y  of y; that is,
TY(x) = TY( y)4 and the partition of TY( y) that yields TY( $y )
must be a refinement of the partition of TY(x) that yields

4. The condition TY(x)  =  TY(y), which holds in all cases to which we ap-
ply Method 3 in the WCP, can be relaxed: TY(x) and TY(y) must simply
have a common supertype. Of course, this generalization imposes more
complex conditions on the relationship among partitions of TY(x) and TY(y)
and the guards on the copy operations.

Fig. 3. Real-valued variables and variables that depend on them.



HEITMEYER:  USING ABSTRACTION AND MODEL CHECKING TO DETECT SAFETY VIOLATIONS IN REQUIREMENTS SPECIFICATIONS 939

TY( $x ). Given that the elements of TY( $y ) and TY( $x ) are sub-
sets of TY( y) = TY(x) and given the preceding conditions,
there is a natural mapping abs: TY( $y ) � TY( $x ) from each
element in TY( $y ) to the (possibly coarser) element of TY( $x )
that contains it. Then, the assignments in the abstract specifi-
cation corresponding to the examples in (1) and (2) become

($) $ : ( $)

( $ ) : $ .

1

2 14 8

x abs y

x y

=

= ≥ ̂
In ( $ ), .2 14 8̂  is the element of TY( $y ) that contains the ele-
ment 14.8 of TY( y). Note that, in this example, we retain the
comparison “�” in ( $ )2 . This is valid provided TY( )y  is an
ordered set, such as the real numbers or the integers, and
TY( $)y  is a partition of TY( y) into intervals with the order-
ing inherited from that of TY(y). All type abstractions using
Method 3 in the WCP example satisfy these conditions.

Comparisons in assignments, such as the example in (2),
can always be transformed into comparisons in guards. For
example,

if

u     true � x : = y � 14.8
fi

becomes

if
u     y � 14.8 � x : = true
u     NOT( y � 14.8) � x : = false

fi

If this transformation is not performed, then all compari-
sons in assignments of form (2) must be taken into account
(along with the comparisons of a variable with a constant
appearing in guards) in determining how to partition the
type of that variable to obtain the appropriate type abstrac-
tion. Assignments of form (1) also have an effect on the
computation of type abstractions: in particular, the type of
variable being copied inherits all subdivisions in the parti-
tion of the type of the variable being copied to. This inheri-
tance must thus be considered in forming the partition into
subintervals for the type of the variable that is copied. Ex-
amples of both forms (1) and (2) occur in the assignments in
the WCP specification and are discussed in Section 5.2.

In guards, concrete variables subject to abstraction can
appear only in comparisons with a constant. The effect of
comparisons in guards on the computation of type abstrac-
tions has already been discussed in Section 4.5.1. Guards
involving abstract variables are transformed in the abstract
specification in analogy with the transformation (2) � ( $ )2 .

5 MODEL CHECKING USING ABSTRACTION

This section shows how we make model checking feasible
by using two of the abstraction methods, Methods 1 and 3,
to construct a reduced WCP specification sufficient for
model checking Property 1 (defined in Section 3.6), which
we refer to below as the property q. First, Method 1 is ap-
plied automatically to remove variables irrelevant to the

validity of q. Then, Method 3 is applied five times in suc-
cession to eliminate the five real-valued variables in the
reduced specification produced by Method 1. Although, in
applying Method 3, we manually replaced each real-valued
variable with an abstract variable, the procedure we de-
scribe below for applying Method 3 is clearly automatable.
The section concludes by describing how model checking
the reduced specification with Spin exposed a violation of q,
how the counterexample produced by Spin was translated
into a counterexample in the full specification, and how
running the counterexample through the SCR simulator
validated the property violation.

5.1 Applying Method 1
To analyze the SCR specification of the WCP for q, we first
apply Method 1 to form the set 2 ⊆ RF of variables occurring
in formula q in either the old state or the new state, namely,

2 = {cVENT_SOLENOID, mTRANS_A, mTRANS_B},

and the set 2*, the reflexive and transitive closure of 2 un-
der the direct dependency relation of the SCR specification
for WCP. We refer to the state machine defined by the SCR
specification as S = (S, Q, r).

The user can invoke the DGB to automatically compute
2*. To do so, the user first displays the complete depend-
ency graph of the WCP (see Fig. 1), identifies the set 2 of
variables in the formula q by clicking on the corresponding
entry for q in the Assertion Dictionary, and then requests
the DGB to select the variables on which the variables in 2
depend. The DGB responds by displaying the graph shown
in Fig. 4, which is the subgraph of the graph in Fig. 1 that is
relevant to the property q. The remaining 55 nodes in this
subgraph represent the members of 2*. Applying this ab-
straction method dramatically reduces the state space by
removing more than 76 percent of the variables in the
original SCR specification. Using the DGB, the user can
save the 55 variables, along with their declarations and ta-
bles, in a new reduced SCR specification. This specification
defines an abstract SCR machine ΣA = (SA, ΘA, ρA) that one
can use to reason about the property q.

5.2 Applying Method 3
A logical next step is to replace real-valued variables in the
SCR specification of SA with finite-valued variables using
Method 3. To do so, we first identify the set of real-valued
variables in the reduced specification. This set contains
mTRANS_A and mTRANS_B, which represent the two transduc-
ers, and three other real-valued terms, tTRANS_A, tTRANS_B,
and tSELECTED_TRANS. Then, we identify all variables of
finite type that directly depend in either the current state or
the next state on any of the real-valued variables: these finite-
valued variables are tTRANS_A_FAIL, tTRANS_B_FAIL,
tPRESSURIZING_LATCH, and tTRANS_AUTO_SEL_B. The
graph in Fig. 3 shows all nine variables and their dependen-
cies. Boxes drawn with solid lines distinguish the five real-
valued variables from the four finite-valued variables.

Next, we apply Method 3 three times in succession to re-
place the three real-valued variables tSELECTED_TRANS,
tTRANS_B, and mTRANS_B (represented by the three leftmost
nodes in the bottom row of Fig. 3). The approach is to elimi-



940 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING,  VOL.  24,  NO.  11,  NOVEMBER  1998

nate the real-valued variables from right to left, replacing
each in turn with a finite-valued variable. The remaining two
real-valued variables, tTRANS_A and mTRANS_A, may be re-
placed by applying Method 3 in an analogous manner.

Section 4.5.1 describes how two guard fragments that re-
fer to the real-valued variable tSELECTED_TRANS were
used to obtain the abstract variable tSELECTED_ TRANŜ
with type set TY(tSELECTED_ TRANŜ ) = {K0, K1, K2}.
Clearly, tSELECTED_ TRANŜ  is a finite-valued variable that
can be substituted for the real-valued variable
tSELECTED_TRANS in reasoning about the property q.

To replace the real-valued variable tTRANS_B with a
finite-valued variable, we consider three finite-valued vari-
ables (see Fig. 3) which depend on tTRANS_B:
tTRANS_B_FAIL, tSELECTED_ TRANŜ , and
tTRANS_AUTO_SEL_B. Just as the dependency of the term
tPRESSURIZING_LATCH on tSELECTED_TRANS was used to
compute the type of tSELECTED_ TRANŜ , the dependency
of the first variable tTRANS_B_FAIL on the real-valued
variable tTRANS_B is used to compute an abstract replace-
ment, tTRANS_B̂ , for tTRANS_B . The type set of the sec-
ond variable, tSELECTED_ TRANŜ , is used to refine the
type set of the abstract variable tTRANS_B̂ . The third vari-
able, the Boolean variable tTRANS_AUTO_SEL_B, must be
handled differently because its value depends on the differ-
ence between tTRANS_A and tTRANS_B. Section 5.3 de-
scribes how we handle this special case which involves
arithmetic. To replace the real-valued variable mTRANS_B
with a finite-valued variable, we use the newly constructed
finite-valued variable tTRANS_B̂  and the intervals defined
by the property q to construct the abstract replacement
mTRANS_B̂ .

The first variable on which tTRANS_B depends,
tTRANS_B_FAIL, refers to tTRANS_B in two assignment
statements, each involving a comparison with a constant.
The two comparisons which refer to tTRANS_B are
“tTRANS_B > 21.0” and “tTRANS_B < 1.8.” These compari-
sons determine a partition of the interval [l, u] into the
subintervals [l, 1.8), [1.8, 21.0], and (21.0, u].

The second variable tSELECTED_TRANS depends on
tTRANS_B via a copy operation. Thus, we must also apply
the subdivisions in its abstract replacement,
tSELECTED_ TRANŜ , to the partition of tTRANS_B. Hence
the abstract replacement variable tTRANS_B̂  has five rele-
vant subintervals: [l, 1.8), [1.8, 9.2], (9.2, 14.8), [14.8, 21.0],
and (21.0, u].

Finally, the real-valued variable tTRANS_B is defined in
terms of the real-valued monitored variable mTRANS_B
(see Fig. 3) using a copy operation. Constructing the ab-
stract replacement variable mTRANS_B̂  for mTRANS_B re-
quires two steps. To form the type set of mTRANS_B̂ , we
first apply the five subintervals in the type set of the ab-
stract variable tTRANS_B̂ . Next, we apply the subdivi-
sions defined by the two constants that appear in the
property q, kMinTRANS = 7.7 and kMaxTRANS = 15.3. In-
cluding these subdivisions produces the following seven
subintervals for the abstract replacement variable
mTRANS_B̂ :  I0 = [l, 1.8), I1 = [1.8, 7.7], I2 = (7.7, 9.2], I3 = (9.2,
14.8), I4 = [14.8, 15.3), I5 = [15.3, 21.0], and I6 = (21.0, u].

5.3 A Complication: Arithmetic

Replacement of a real-valued variable with an enumerated
type produces a sound and, under certain mild restrictions,
complete abstraction as long as only simple comparisons
are made. Such comparisons are of the form x o k, where x is

Fig. 4. Dependency graph for reduced SCR specification.



HEITMEYER:  USING ABSTRACTION AND MODEL CHECKING TO DETECT SAFETY VIOLATIONS IN REQUIREMENTS SPECIFICATIONS 941

a variable, o is a relational operator, and k is a constant. The
situation becomes more complex when arithmetic is neces-
sary. Because the Boolean variable tTRANS_AUTO_SEL_B
depends on the difference between tTRANS_A and
tTRANS_B, our abstract model does not have the desired
property that all variables in RF _ {tTRANS_B} which de-
pend on tTRANS_B depend only on tTRANS_B̂ . To handle
this problem, we observe that it is sound to simply allow
the value of tTRANS_AUTO_SEL_B to be computed nonde-
terministically as either true or false in the abstraction. This
can be refined by restricting the nondeterministic choice of
the value of tTRANS_AUTO_SEL_B to its possible values
when tTRANS_A ¶ tTRANS_ Â  and tTRANS_B ¶
tTRANS_B̂ , and further refined by also taking into account
any conditions depending upon other variables. Because
tTRANS_AUTO_SEL_B is Boolean, introduction of some
nondeterminism into its value does not significantly in-
crease the size of the state space. Abstractions using this
technique will always be sound but may not be complete.
In such situations, it is necessary to validate any counterex-
ample using our simulator.

The appropriate point in the abstraction process at which
to apply this “nondeterministic variable” technique is after
applying Method 1, since Method 1 can eliminate some of
the variables whose definitions involve arithmetic (which
happened in the WCP example). One question concerns the
likelihood that, in such situations, a counterexample to an
abstract property in an abstract specification will corre-
spond to a counterexample in the concrete specification. In
the WCP example, inspection of the relevant tables suggests
that a change in tTRANS_AUTO_SEL_B affects the truth of
the property q in only a few cases. Therefore, in the WCP
example, it is highly likely that, if an abstract counterexam-
ple is found, a corresponding concrete counterexample can
be found. In fact, we found abstract counterexamples for
the WCP example using every version of the nondeter-
ministic variable technique described above, and in addi-
tion, found an abstract counterexample for an unsound
abstraction in which the table for tTRANS_AUTO_SEL_B was
translated into a qualitatively similar deterministic version
in the abstraction. In all cases, the abstract counterexamples
proved to correspond to concrete ones.

5.4 Constructing the Abstract Property qA

Because the original property q refers to the real-valued
variables mTRANS_A and mTRANS_B, it is necessary to con-
struct an abstract version of the property q that refers to the
abstract variables in the reduced specification rather than
the real-valued variables mTRANS_A and mTRANS_B in the
original specification. Doing so is straightforward: The ab-
stract property, which we call qA, can be represented as

@T(cVENT_SOLENOID) Æ
(I1 < a’ Á a’ < I5) Â (I1 < b’ Á b’ < I5),

where a = mTRANS_ Â  and b = mTRANS_B̂  and,  in the nota-
tion of ( $ )2  in Section 4.5.2, I1 = [1.8, 7.7] = 7 7.̂  = kMinTranŝ
and I5 = [15.3, 21.0] = 15.3̂  = kMaxTranŝ .

5.5 Model Checking with Spin
By applying Methods 1 and 3 as described above, we obtain
a sound abstraction of the SCR specification of WCP for
reasoning about property q. To analyze the reduced SCR
specification, we invoked the explicit state model checker
Spin from within our toolset, which automatically trans-
lated the reduced specification into Promela, the language
of Spin. For complete details and fully worked-out exam-
ples of how SCR specifications can be translated into either
Promela, the language of Spin, or into the language of the
SMV model checker, see [9], [11]. Because our tools support
a very limited property language (e.g., no ordered enumer-
ated types, no set membership), we represented the ordered
enumerated types as subranges of integers. Hence, the rep-
resentation of qA that we actually checked was

@T(cVENT_SOLENOID) Æ
                                 (1 < a’ Á a’ < 5) Â (1 < b’ Á b’ < 5),

where ′a  and ′b  are integers in {0, 1, ¤, 6} rather than ele-
ments of an enumerated type.

Running Spin exposed a pair of reachable states that
violate property q and produced a counterexample, i.e., an
execution sequence that starts in a valid initial state and,
through a sequence of transitions permitted by the next-
state relation of the abstract machine, ends in the pair of
states that violate the property. Fig. 5 shows both the exe-
cution sequence consisting of five input events that lead to
the bad pair of states (the top five lines) and the first parts
of the final states in the sequence (the final 15 lines). Spin
required less than 30 seconds to find the violation.

Fig. 5. Results of running Spin.



942 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING,  VOL.  24,  NO.  11,  NOVEMBER  1998

5.6 Using the Simulator for Validation
Using our methods, a counterexample obtained from model
checking, i.e., a sequence of input events, will be in terms of
an abstract state machine. We have a standard method for
translating each input event in the abstract machine to a
sequence of one or more input events in the concrete ma-
chine. In the case of an input event involving an abstract
monitored variable constructed with Method 3, we simply
choose a member of the corresponding equivalence class to
obtain a corresponding monitored variable in the concrete
execution sequence. In the case of an input variable in-
volving an abstract monitored variable constructed with
Method 2, we may need to translate the abstract input
event into a sequence of two or more input events in the
concrete machine.

If the derived sequence of input events is executable in
the concrete model, as it is in the WCP example, executing
the input sequence will produce a sequence of concrete
states. This sequence of concrete states can be mapped to a
sequence of abstract states that typically corresponds to the
abstract counterexample, perhaps with some stuttering
added. (By stuttering, we mean a sequence of two or more
concrete states that correspond to one abstract state.)

In the general case, the sequence of concrete events that
we derive may not be directly executable, because some of
the translated input events might not be enabled according
to the next-state relation for the corresponding input vari-
able. A typical example occurs when some numerical input
quantity takes too large a leap in one of the derived events.
However, in such cases, this large leap can usually be
achieved in several legal small steps, and inserting the extra
small steps gives us a good candidate for a concrete coun-
terexample. When our sufficient conditions for complete-
ness are satisfied, we can automatically construct a se-
quence of small concrete steps that can be mapped to a se-
quence of abstract steps with stuttering. Since by construc-
tion (using the notation of Section 4) q(s) Æ qA(sA) for every
concrete state s, we can be confident that our derived se-
quence of small steps is indeed a concrete counterexample.

To evaluate the validity of q in the original SCR specifi-
cation, we manually translated the sequence of input events
obtained from Spin (see Fig. 5), which is in terms of the ab-
stract state machine, to a corresponding sequence of input
events in the original state machine. In the WCP example,
the translation is trivial. We simply replace each value of an
abstract variable with a real number in the corresponding
interval. Steps 2 and 4 are the two steps in the scenario
where this translation is required. In each case, we selected
the value 18.0, which lies in the interval I5 = [15.3, 21.0].
(The “5” in the abstract scenario refers to interval I5.) Each
of the remaining three steps involve a monitored variable
that is the same in both the abstract and the concrete ma-
chines. Hence, no translation of these steps is necessary.

Next, we ran this concrete scenario through our simula-
tor. To check for the property of interest q, we added the
property to the Assertion Dictionary. Running the scenario
through our simulator leads to an assertion failure (see the
bottom of Fig. 6). Clicking on the line reporting the asser-
tion failure highlights the first property in the Assertion

Dictionary shown in Fig. 2, thus validating that the prop-
erty violation detected by model checking corresponds to a
property violation in the original specification. Safety engi-
neers familiar with the WCP have confirmed that this is a
true safety violation.

When used in conjunction with model checking, simula-
tion may be used either to demonstrate a property violation
or to evaluate a candidate violation. In the case of abstrac-
tions that are complete, simulation may be used to demon-
strate a counterexample in the original specification that
corresponds to a counterexample produced by a model
checker in analyzing the reduced specification. In the case
of abstractions for which completeness is not guaranteed,
simulation is useful for validation, i.e., for testing whether
an error detected by model checking is an actual error in
the original specification. In many cases, such as the case of
WCP, the reduced specification is not guaranteed to be a
complete abstraction. Hence, some method is needed to
evaluate the counterexample in the original specification
to ensure that the property violation is not spurious.
Moreover, when any part of the abstraction process and
scenario translation is done by hand, errors can be intro-
duced, either in developing the reduced model from the
original specification or in translating a counterexample
produced by model checking into a scenario in the original
specification. Clearly, when manual processes are used,
simulation is effective for ensuring that a suspected viola-
tion is a true violation in the original specification.

5.7 More About the Safety Violation
Applying Spin to the reduced specification described above
exposed numerous violations of property q. The probability
of some of these violations occurring in practice is low; for
example, some occur only when the vent valve sensor fails
(i.e., in step 3 in Fig. 5, the sensor reports the vent valve is
open when it is closed) and both transducers fail (i.e., both
mTRANS_A and mTRANS_B have values in interval I0). Other
scenarios which produce unsafe behavior are more likely.
For example, both transducers can report a pressure read-
ing in a hazardous region (either I1 or I5) at the same time
that the vent valve sensor fails. In all of these cases, the
WCP specification allows the system to open the valve—
i.e., to set the value of cVENT_SOLENOID to true—even
though doing so is very dangerous.

The scenario in Fig. 6 contains two seemingly unrealistic
transitions, i.e., each transducer reports a pressure reading of
12.0 psi in one state and a reading of 18.0 psi later on, a dif-
ference of 6 psi. Note that this scenario is a correct abstraction
of the possible behavior of a continuous system. A change in
pressure of 6 psi could take place over minutes and in a se-
ries of steps that do not affect the abstract state. It is also
worth noting that we selected some values somewhat arbi-
trarily (i.e., 12.0 as the initial value, 18.0 as the representative
concrete value of the abstract value I5). We could easily pick
more realistic concrete values for scenarios, e.g., smaller
changes in the transducer values from one step to the next.
What is important is that a wide range of concrete values
(realistic or unrealistic) violate the safety assertion.



HEITMEYER:  USING ABSTRACTION AND MODEL CHECKING TO DETECT SAFETY VIOLATIONS IN REQUIREMENTS SPECIFICATIONS 943

6 DISCUSSION

This section discusses five issues that arose in our study—
the role of redundancy in specifying requirements, the crite-
ria for selecting an analysis method, contexts in which
automatic methods can support the use of abstraction in
model checking, how automatic abstraction methods com-
bined with other methods can reduce the state explosion
problem, and how our approach to abstraction can be ex-
tended to methods other than SCR.

6.1 Role of Redundancy in Requirements
Specification

In its original form, the A-7 requirements specification [38]
was designed to minimize redundancy. For example, the
required values of each variable under all possible conditions
were defined in one unique place in the specification. By
minimizing redundancy, the designers hoped to facilitate
learning about a given aspect of the specification, to facilitate
changing the specification, and, more generally, to limit op-
portunities for inconsistency in the specification. As shown
in this paper, some carefully designed redundancy in re-
quirement specifications can be valuable. Above, we showed
that analyzing two redundant specifications of the required
behavior, one operational and the other property-based, can
expose inconsistencies, which in turn can expose errors. Like
us, Atlee and her colleagues have used model checking to
detect inconsistencies in SCR specifications. Using this ap-
proach, they have exposed errors in the A-7 requirements

specification [62], in Kirby’s specification of automobile
cruise control [6], and in other specifications. In each case,
they analyzed two redundant specifications of the required
behavior—one property-based, the other operational.

6.2 Selecting an Analysis Method
Among the available techniques for analyzing the consis-
tency of a safety property and an operational specification
are human inspection, model checking, and mechanical
theorem proving. Software developers choose a particular
technique based on its relative effectiveness and its relative
costs. The cost of using a technique depends on two factors:
the amount of human effort needed to apply the technique
and any specialized expertise that is needed (e.g., theorem
proving skills).

For detecting certain classes of errors, tools are far more
cost-effective than human inspection. For example, the SCR
consistency checker needed only a few minutes to automati-
cally detect numerous errors (17 missing cases and 57 in-
stances of nondeterminism) in a revised version of the A-7
requirements document [32]. Systematic inspection of the
document by two independent review teams had over-
looked these errors. The existence of so many overlooked
errors was quite surprising given that the tabular notation
used in the document was designed to make such errors
obvious—most of the information needed to detect missing
cases and nondeterminism was located in a single table.
Miller reports similar results in the development of a speci-
fication for a flight guidance system: the SCR tools uncov-
ered many errors overlooked by inspection [58]. Inspection
is even less likely to detect violations of safety properties,
since analyzing safety properties usually involves dozens of
variable definitions, distributed throughout the specifica-
tion. Moreover, checking for safety violations is much more
complex than checking for missing cases or nondetermi-
nism, since reachability, rather than simply function defini-
tions, must be analyzed.

Applying model checking prior to theorem proving is an
effective way to use the two technologies. Because model
checking does not require the mathematical sophistication
and human effort that theorem proving currently entails,
model checking is relatively inexpensive. Moreover, where
model checkers are good for detecting property violations,
the treatment of invalid properties by theorem provers is
often problematic. Hence, even if one’s primary goal is to
use theorem proving, a good strategy is to weed out simple
errors with model checking before one invests the time and
effort usually required for theorem proving [29].

Theorem proving is usually most effective after model
checking. Although model checking may be used to verify
properties of practical software specifications (i.e., to demon-
strate that every possible scenario satisfies the properties of
interest), the enormous size of most of these specifications
makes model checking more effective for detecting errors.
When model checking fails to reveal an error in such specifi-
cations or produces many spurious counterexamples because
the abstraction used was not complete, the user may success-
fully use theorem proving to establish the property. We have,
in fact, done this for a small SCR specification, using the
proof techniques described in [4]. Moreover, when model

Fig. 6. Simulator log showing an assertion failure.



944 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING,  VOL.  24,  NO.  11,  NOVEMBER  1998

checking fails to expose a violation of a property, theorem
proving, strengthened with appropriate auxiliary techniques,
may do so. As in model checking, abstraction is useful in
theorem proving. However, in theorem proving, one can rea-
son about generic values. As a result, abstractions that are
not complete can usually be avoided. Thus, analysis by theo-
rem proving is usually exact.

6.3 Role of Automation in Supporting Abstraction
Above, we show how standard abstraction methods can be
used to reduce the state space of the model analyzed by a
model checker. We are developing automated methods that
support the use of our standard abstraction methods in five
different contexts:

•� Based on the property of interest, identify variables to
be eliminated and variables whose type sets can be
more abstract

•� Once the relevant variables and the nature of the
needed abstraction have been determined, construct
the specification of the abstract state machine

•� Translate the original property q to an abstract prop-
erty qA

•� In the case of Methods 2 and 3, determine whether
sufficient conditions for completeness are satisfied

•� Translate the counterexample obtained by model
checking (if any) into a corresponding scenario in the
original state machine model

6.4 Combining Automatic Abstraction Methods with
Other Methods

After automatic abstraction methods, such as those de-
scribed above, are used to produce a reduced state machine
model, other abstraction methods, such as those described
by Clarke et al. [15] and Graf et al. [27], [28], which use
mathematical reasoning, perhaps supported by automated
theorem proving and the automated generation of invari-
ants [46], may further reduce the state space. Moreover,
once the specification of the state machine model has been
reduced, various methods for efficient analysis of different
representations, such as BDDs, or efficient decision proce-
dures, such as techniques for deciding Presburger arithme-
tic formulae and the congruence closure algorithm for han-
dling uninterpreted function symbols, may be applied to
the reduced model [8]. Eventually, a combination of these
methods may allow us to verify large software specifica-
tions, a task that currently is infeasible for many practical
software specifications.

6.5 Extending Automated Abstraction Beyond SCR
Two major features of SCR specifications facilitate the sup-
port of automated abstraction. Largely the result of good
engineering practice, such features should not be difficult to
support in notations and tools associated with other soft-
ware development methods. In particular, software specifi-
cations represented in other notations that have these fea-
tures should easily support automated abstraction meth-
ods, such as those described above.

One extremely important feature of high-quality specifi-
cations is well-formedness; the specifications should be free
of type errors, circular definitions, missing cases, and un-

wanted nondeterminism. Tools, such as our consistency
checker, should be available that automatically detect and
report such problems to the user so they may be corrected.

A second important feature of high-quality specifications
lies in their structure [34], [35]: All information about each
variable should be localized. For example, in an SCR speci-
fication, all information about each variable is in exactly
two places: a table that describes the function defining the
variable’s value (or, in the case of a monitored variable, a
dictionary entry that defines the associated relation) and a
dictionary entry that provides the variable’s static informa-
tion (type, initial value, etc.). This facilitates the removal or
replacement of the variable when the abstract machine is
constructed. For example, removing a dependent variable
from an SCR specification is easy—the tool simply deletes
the table defining the variable and the variable’s dictionary
entry. In addition, the dependency graph shows the impact
of removing a variable.

7 RELATED WORK

Below, we describe other work in which model checking has
been applied to requirements specifications. We also compare
our use of abstraction in model checking with other ap-
proaches. While our objective is to develop mathematically
sound abstraction methods that can be applied automatically
to requirements specifications, the major objective of other
work on abstraction has been to formulate a theory of ab-
straction. The most complete treatment is the very general
theory of abstraction relations formulated by Loiseaux et al.
[51] and extended with some modifications by Dams et al.
[19]. Our approach is a special case of the approach in [51] in
which the abstraction relation is a map.

7.1 Model Checking Requirements Specifications
An early application of model checking to SCR require-
ments specifications was reported in 1993 by Atlee and
Gannon, who used the model checker MCB [16] to analyze
properties of individual mode transition tables taken from
SCR specifications [6]. Our approach to model checking
SCR requirements specifications is a generalization and
extension of the approach originally formulated and further
developed by Atlee and her colleagues [6], [5], [62]. While
the techniques of Atlee et al. are designed to analyze prop-
erties of mode transition tables with Boolean input vari-
ables, the approach we describe in [9], [11], appropriately
extended, can be used to analyze properties of a complete
SCR specification: The properties analyzed can contain any
variable in the specification, and variables can range over
varied domains, such as integer subranges, enumerated
values, and infinite subranges of the real numbers.

In [13], a revision of the 1996 paper by Anderson et al. [2],
Chan et al. describe the use of SMV to analyze a component
of the Traffic Alert and Collision Avoidance System (TCAS II)
requirements specification expressed in the Requirements
State Machine Language (RSML) notation [30]. They define
schemas for translating RSML constructs (such as events,
input variables, environment assumptions, and the syn-
chrony hypothesis) into suitable SMV constructs, just as we
do for SCR. However, unlike our translation of SCR specifi-



HEITMEYER:  USING ABSTRACTION AND MODEL CHECKING TO DETECT SAFETY VIOLATIONS IN REQUIREMENTS SPECIFICATIONS 945

cations into SMV which is semantics-preserving, the seman-
tics of the SMV model generated by their translation may
differ from the semantics of the original RSML specification
[13, p. 511]. Another important difference between their
approach and ours is that their translation involved signifi-
cant manual effort, such as modifications to SMV and the use
of special-purpose macro processors. In contrast, we use both
Spin and SMV “out of the box.”

Another significant difference between the two ap-
proaches lies in the way integer variables and constants are
handled. The problem is state explosion—since the encod-
ing in SMV for integer variables (and operations on them)
is not optimal, the BDDs blow up, even in specifications
containing just one or two integer variables. To solve this
problem, Chan et al. directly encode integer variables as
BDD bits and implement addition and comparison at the
source code level by defining parameterized macros which
are preprocessed using awk scripts. In contrast, we effec-
tively avoid the problem by applying our correctness pre-
serving abstraction methods to specifications containing
integer (or real) variables. Because we only model check the
abstractions, the state spaces of the abstractions in our ex-
amples may be orders of magnitude smaller than the state
spaces Chan et al. analyze.

7.2 Model Checking and Abstraction
Work on abstraction, both in the context of model checking
and on the related topic of error-preserving abstractions
[66], ultimately derives from the seminal work in 1977 of
the Cousots on abstract interpretation [18]. Our work on
abstraction in model checking is most closely related to
later work on abstraction, largely theoretical, by Clarke et
al. [15], Loiseaux et al. [51], Graf and Loiseaux [27], [28],
Dams et al. [19], and Kurshan [50]. We note that our first
two abstraction methods are related to methods proposed
by Kurshan as early as 1987 [49], [17]. Like ours, Kurshan’s
methods, which he calls localization reductions [48], remove
parts of the specification irrelevant to the property of inter-
est. Below, we describe five significant aspects of our ap-
proach to abstraction that distinguish our approach from
other approaches.

First, we focus on invariant properties of single states or
transition state-pairs rather than properties of execution
sequences. As stated above, we have found that the most
common properties in software requirements specifications
are state and transition invariants. Expressing these prop-
erties does not require any of the techniques useful for de-
scribing execution sequences, such as temporal logics (e.g.,
CTL and CTL*), the m-calculus, or automata that accept lan-
guages with infinite words [50].

Second, the abstractions we apply use variable restric-
tion, which eliminates certain variables, and variable ab-
straction, which abstracts the data types of certain vari-
ables, in specific limited ways that can be automated. Both
can be viewed as special cases of the data abstractions in-
troduced by Clarke et al., since variable restriction is
equivalent to abstracting the data type of each eliminated
variable to a single value. Both our abstractions and those
of Clarke et al. are a special case of the more general ab-
straction relations described by Loiseaux et al. (We note

that, in the examples provided in [51], [28], and [27] all of
the abstraction relations are in fact maps.) Although our
abstractions are a proper subset of those considered by
Clarke et al. [15], we can obtain fairly complex abstractions
by performing a sequence of our simple abstractions.

Third, besides restricting attention to simple state and
transition invariants, we construct the abstraction based on
a single property. By contrast, in [15], [51], [19], and [50], the
focus is on abstractions that preserve an entire class of
properties of execution sequences derived from some set of
primitive predicates. Focusing on a single simple property
offers some advantages. For one, the size of the abstract
model is generally smaller. Further, our concept of a “com-
plete” abstraction, though analogous to the “exact” ab-
stractions of Clarke [15] and Kurshan [50] and the “strong
preservation” of properties by abstractions described by
Loiseaux et al. [51], is less restrictive. Unlike other authors
[51], [50], [15], we have established sufficient conditions for
completeness that do not require the abstraction mapping
to determine a bisimulation. We often can establish com-
pleteness for our abstractions using automatic techniques.

Fourth, because we also focus on certain specific ab-
straction methods, we are able to automate the choice and
construction of abstractions, including abstraction of the
property. In the work of others, the user must typically
propose the abstraction, or at least the abstraction relation,
and provide appropriate interpretations of primitive predi-
cates. At least one author, Graf [27], like us, uses abstrac-
tions tailored to single properties, but user ingenuity is
needed to find the abstractions, even when a library of ab-
stractions and heuristics are used to aid in the search.

Finally, building and establishing the correctness
(soundness or completeness) of our abstractions is usually
automatic and not computationally expensive. As a result,
our methods do not require the modification of a BDD de-
scription of the automaton as in [15] nor the processing of
the state transition graph as in [50]. Rather, building the
abstraction and establishing correctness are done at the SCR
specification level.

8 CONCLUSIONS

This paper showed how we applied our abstraction meth-
ods, our model checking approach, and our simulator to
expose a safety violation in a contractor-produced specifi-
cation of a safety-critical system, and how the three ab-
straction methods described in the paper make the analysis
of requirements specifications practical. An important as-
pect of our approach is that the contractor-produced speci-
fication was not developed with the SCR method in mind.
That the model underlying the contractor SRS matches the
model that underlies the SCR method suggests that the SCR
method is relevant to practical software development.

Method 1 as well as the construction of the abstract SCR
machine for Method 1 have been implemented and inte-
grated into the SCR toolset. Prototype implementations of
special cases of Methods 2 and 3 have also been developed.
We are extending our work in several ways:



946 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING,  VOL.  24,  NO.  11,  NOVEMBER  1998

•� We are designing algorithms for Methods 2 and 3 that
automatically extract the abstraction ΣA and the prop-
erty qA from the original SCR specification and a
given property q. We also are investigating the extent
to which we can automatically check that the condi-
tions for completeness are satisfied.

•� We are also developing software that will automati-
cally translate any counterexample produced by
model checking the abstraction ΣA into a correspond-
ing scenario in the original specification.

Our abstraction methods are mathematically sound
methods that can dramatically reduce the state space by
eliminating information irrelevant to the property of inter-
est and abstracting away unneeded detail. Our long-term
goal is to combine the power of theorem proving technol-
ogy with the ease of use of model checking technology. A
major problem with current theorem proving technology is
that applying the technology requires mathematical so-
phistication and theorem proving skills. The major problem
with model checking is state explosion. Clearly, theorem
proving has the potential to dramatically reduce the num-
ber of states that a model checker analyzes. Automatic
theorem proving methods that can be applied for this pur-
pose are therefore worth developing.

We are also exploring other automated techniques useful
for analyzing large, complex requirements specifications.
One is automatic invariant generation [46]. Another goal of
our current research is to integrate one or more decision pro-
cedures into the toolset—we are especially interested in deci-
sion procedures that can evaluate logical expressions con-
taining numbers and arithmetic. Currently, the analysis of
such specifications is problematic, e.g., for the consistency
checker. Finally, we are investigating how to support time
and feedback in the SCR model, how to improve support for
hierarchy and modularization in SCR specifications, and
how to automatically generate correct, efficient source code
from SCR specifications. Yet to be explored is how SCR speci-
fications containing time and feedback can be analyzed effi-
ciently using model checking and other analysis techniques.

To date, our requirements model has provided a solid
foundation for a suite of analysis tools which can detect
errors automatically and which clearly explain the cause of
those errors, thereby facilitating error correction. Such an
approach should lead to the production of high-quality re-
quirements specifications, which should in turn lead to
software that is more likely to perform as required and less
likely to lead to accidents. Such high-quality specifications
should also lead to significant reductions in software de-
velopment costs.

ACKNOWLEDGMENTS

We are extremely grateful to C. Colket, K. Andree, B. Capoc-
cia, P. Roach, J. Rainone, and D. Sjoblom, who made us aware
of the WCP specification, answered our many questions, and
provided further information about the WCP. Without their
help, the analyses described in the paper could not have been
performed. We also appreciate the insights on our abstraction
methods of Neil Immerman of the University of Massachu-
setts, whose detailed comments helped us improve our for-
mal framework. We also gratefully acknowledge the con-

structive comments of Ralph Jeffords and Steve Sims at NRL
and comments from the anonymous referees on drafts of this
paper. Finally, we thank Todd Grimm for his substantial
contributions to the construction of the SCR toolset; Carolyn
Gasarch and Cheryl Sarteschi for implementing the first ab-
straction method and integrating it into the toolset; and Steve
Sims for building prototype implementations of the two
other abstraction methods. This research was supported by
the Office of Naval Research and the Space and Naval War-
fare Command.

REFERENCES

[1]� T.A. Alspaugh, S.R. Faulk, K. Heninger Britton, R.A. Parker, D.L.
Parnas, and J.E. Shore. “Software Requirements for the A-7E Air-
craft,” Technical Report NRL-9194, Naval Research Laboratory,
Washington, D.C., 1992.

[2]� R.J. Anderson, P. Beame, S. Burns, W. Chan, F. Modugno, D. Not-
kin, and J.D. Reese, “Model Checking Large Software Specifica-
tions,” Proc. Fourth ACM SIGSOFT Symp. Foundations of Software
Eng., Oct. 1996.

[3]� M. Archer and C. Heitmeyer, “The Use of Model Checking and
Abstraction in Analyzing Requirements Specifications: A Formal
Foundation,” Technical Report, Naval Research Laboratory,
Washington, D.C., 1998. Draft.

[4]� M. Archer, C. Heitmeyer, and S. Sims, “TAME: A PVS Interface to
Simplify Proofs for Automata Models,” Proc. User Interfaces for
Theorem Provers, Eindhoven, Netherlands, Eindhoven Univ. tech-
nical report, Eindhoven Univ. of Technology, July 1998.

[5]� J.M. Atlee and M.A. Buckley, “A Logic-Model Semantics for SCR
Specifications,” Proc. Int’l Symp. Software Testing and Analysis, Jan.
1996.

[6]� J.M. Atlee and J. Gannon, “State-Based Model Checking of Event-
Driven System Requirements,” IEEE Trans. Software Eng., vol. 19,
no. 1, pp. 24–40, Jan. 1993.

[7]� G. Berry and G. Gonthier, “The Esterel Synchronous Program-
ming Language: Design, Semantics, Implementation,” Science of
Computer Programming, vol. 19, 1992.

[8]� R. Bharadwaj, “A Generalized Validity Checker,” technical report,
Naval Research Laboratory, Washington, D.C., 1996.

[9]� R. Bharadwaj and C. Heitmeyer, “Model Checking Complete
Requirements Specifications Using Abstraction,” Technical Report
NRL-7999, Naval Research Laboratory, Washington, D.C., Nov.
1997.

[10]� R. Bharadwaj and C. Heitmeyer, “Verifying SCR Requirements
Specifications Using State Exploration,” Proc. First ACM SIGPLAN
Workshop Automatic Analysis of Software, 1997.

[11]� R. Bharadwaj and C. Heitmeyer, “Model Checking Complete
Requirements Specifications Using Abstraction,” Automated Soft-
ware Eng. J., vol. 6, no. 1, Jan. 1999.

[12]� B.W. Boehm, Software Engineering Economics. Englewood Cliffs,
N.J.: Prentice Hall, 1981.

[13]� W. Chan, R.J. Anderson, P. Beame, S. Burns, F. Modugno, D. Not-
kin, and J.D. Reese, “Model Checking Large Software Specifica-
tions,” IEEE Trans. Software Eng., vol. 24, no. 7, July 1998.

[14]� K.M. Chandy and J. Misra, Parallel Program Design—A Foundation.
Addison-Wesley, 1988.

[15]� E. Clarke, O. Grumberg, and D. Long, “Model Checking and Ab-
straction,” Proc., Principles of Programming Languages (POPL), 1994.

[16]� E.M. Clarke, E. Emerson, and A. Sistla, “Automatic Verification of
Finite State Concurrent Systems Using Temporal Logic Specifica-
tions,” ACM Trans. Program Language and Systems, vol. 8, no. 2, pp.
244–263, Apr. 1986.

[17]� E.M. Clarke and R.P. Kurshan, “Computer-Aided Verification,”
IEEE Spectrum, pp. 61–67, June 1996.

[18]� P. Cousot and R. Cousot, “Abstract Interpretation: A Unified Lat-
tice Model for Static Analysis of Programs by Construction or
Approximation of Fixpoints,” Proc. Symp. Principles of Program-
ming Languages, 1977.

[19]� D. Dams, R. Gerth, and O. Grumberg, “Abstract Interpretation of
Reactive Systems,” ACM Trans. Program Language and Systems, pp.
111–149, 1997.



HEITMEYER:  USING ABSTRACTION AND MODEL CHECKING TO DETECT SAFETY VIOLATIONS IN REQUIREMENTS SPECIFICATIONS 947

[20]� D.L. Dill, A.J. Drexler, A.J. Hu, and C.H. Yang, “Protocol Verifica-
tion as a Hardware Design Aid,” Proc. IEEE Int’l Conf. Computer
Design: VLSI in Computers and Processors, pp. 522–525, 1992.

[21]� S. Easterbrook and J. Callahan, “Formal Methods for Verification
and Validation of Partial Specifications: A Case Study,” J. Systems
and Software, 1997.

[22]� S. Easterbrook, R. Lutz, R. Covington, Y. Ampo, and D. Hamilton,
“Experiences Using Lightweight Formal Methods for Require-
ments Modeling,” IEEE Trans. Software Eng., vol. 24, no. 1, Jan.
1998.

[23]� R. Fairley, Software Eng. Concepts. New York: McGraw-Hill, 1985.
[24]� S.R. Faulk, J. Brackett, P. Ward, and J. Kirby, Jr., “The CoRE

Method for Real-Time Requirements,” IEEE Software, vol. 9, no. 5,
pp. 22–33, Sept. 1992.

[25]� S.R. Faulk, L. Finneran, J. Kirby, Jr., S. Shah, and J. Sutton, “Expe-
rience Applying the CoRE Method to the Lockheed C-130J,” Proc.
Ninth Ann. Conf. Computer Assurance (COMPASS‘94), pp. 3–8,
Gaithersburg, Md., June 1994.

[26]� P. Godefroid, “Using Partial Orders to Improve Automatic Verifi-
cation Methods,” Proc. Second Int’l Workshop Computer-Aided Veri-
fication, pp. 176–185, 1990.

[27]� S. Graf, “Characterization of a Sequentially Consistent Memory
and Verification of a Cache Memory by Abstraction,” Proc. Com-
puter Aided Verification, 1994.

[28]� S. Graf and C. Loiseaux, “A Tool for Symbolic Program Verifica-
tion and Abstraction,” Proc. Computer Aided Verification, pp. 71–84,
1993.

[29]� K. Havelund and N. Shankar, “Experiments in Theorem Proving
and Model Checking for Protocol Verification,” Proc. Formal Meth-
ods Europe (FME’96), pp. 662–681, Lecture Notes in Computer Sci-
ence 1051, Springer-Verlag, Mar. 1996.

[30]� M.P.E. Heimdahl and N. Leveson, “Completeness and Consis-
tency in Hierarchical State-Based Requirements,” IEEE Trans.
Software Eng., vol. 22, no. 6, pp. 363–377, June 1996.

[31]� C. Heitmeyer, J. Kirby, Jr., and B. Labaw, “Applying the SCR Re-
quirements Method to a Weapons Control Panel: An Experience
Report,” Proc. Second ACM Workshop Formal Methods in Software
Practice (FMSP’98), 1998.

[32]� C.L. Heitmeyer, R.D. Jeffords, and B.G. Labaw, “Automated Con-
sistency Checking of Requirements Specifications,” ACM Trans.
Software Eng. and Methodology, vol. 5, no. 3, pp. 231–261, July 1996.

[33]� C. Heitmeyer, “On the Need for Practical Formal Methods,” Proc.
Formal Techniques in Real-Time and Fault-Tolerant Systems
(FTRTFT‘98), Lyngby, Denmark, Sept. 1998.

[34]� C. Heitmeyer, A. Bull, C. Gasarch, and B. Labaw, “SCR*: A Toolset
for Specifying and Analyzing Requirements,” Proc. 10th Ann.
Conf. Computer Assurance (COMPASS‘95), pp. 109–122,
Gaithersburg, Md., June 1995.

[35]� C. Heitmeyer, J. Kirby, Jr., and B. Labaw, “Tools for Formal Speci-
fication, Verification, and Validation of Requirements,” Proc. 12th
Ann. Conf. Computer Assurance (COMPASS’97), Gaithersburg, Md.,
June 1997.

[36]� C. Heitmeyer, J. Kirby, Jr., B. Labaw, and R. Bharadwaj, “SCR*: A
Toolset for Specifying and Analyzing Software Requirements,”
Proc. Computer-Aided Verification, 10th Ann. Conf. (CAV’98), Van-
couver, Canada, 1998.

[37]� C.L. Heitmeyer, R.D. Jeffords, and B.G. Labaw, “Tools for Ana-
lyzing SCR-Style Requirements Specifications: A Formal Founda-
tion,” technical report, Naval Research Laboratory, Washington,
D.C., 1998. Draft.

[38]� K. Heninger, D.L. Parnas, J.E. Shore, and J.W. Kallander, “Soft-
ware Requirements for the A-7E Aircraft,” Technical Report 3876,
Naval Research Laboratory, Washington, D.C., 1978.

[39]� K.L. Heninger, “Specifying Software Requirements for Complex
Systems: New Techniques and Their Application,” IEEE Trans.
Software Eng., vol. 6, no. 1, pp. 2–13, Jan. 1980.

[40]� S.D. Hester, D.L. Parnas, and D.F. Utter, “Using Documentation as
a Software Design Medium,” Bell System Technical J., vol. 60, no. 8,
pp. 1941–1977, Oct. 1981.

[41]� G.J. Holzmann, Design and Validation of Computer Protocols. Pren-
tice Hall, 1991.

[42]� G.J. Holzmann, “The Model Checker SPIN,” IEEE Trans. Software
Eng., vol. 23, no. 5, pp. 279–295, May 1997.

[43]� D. Jackson, “Requirements and Model Checking,” minitutorial,
Third Int’l IEEE Symp. Requirements Eng., Jan. 1997.

[44]� D. Jackson, S. Jha, and C.A. Damon, “Faster Checking of Software
Specifications Using Isomorphs,” Proc., Principles of Programming
Languages (POPL), 1994.

[45]� F. Jahanian and A.K. Mok, “Modechart: A Specification Language
for Real-Time Systems,” IEEE Trans. Software Eng., vol. 20, no. 10,
pp. 879–889, Oct. 1994.

[46]� R. Jeffords and C. Heitmeyer, “Automatic Generation of State
Invariants from Requirements Specifications,” Proc. Sixth ACM
SIGSOFT Symp. Foundations of Software Eng., Nov. 1998.

[47]� J. Kirby, Jr., “Example NRL/SCR Software Requirements for an
Automobile Cruise Control and Monitoring System,” Technical
Report TR-87-07, Wang Inst. of Graduate Studies, 1987.

[48]� R.P. Kurshan, “Formal Verification in a Commercial Setting. Proc.
Design Automation Conf., June 1997.

[49]� R.P. Kurshan, “Reducibility in Analysis of Coordination,” P.
Varaiya and A.B. Kurzhanski, eds., Discrete Event Systems: Models
and Applications, pp. 19–39. New York: Springer-Verlag, 1987.

[50]� R.P. Kurshan, Computer-Aided Verification of Coordinating Processes:
The Automata-Theoretic Approach. Princeton Univ. Press, 1994.

[51]� C. Loiseaux, S. Graf, J. Sifakis, A. Bouajjani, and S. Bensalem,
“Property Preserving Abstractions for the Verification of Concur-
rent Systems,” Formal Methods in System Design, vol. 6, pp. 1–35,
1995.

[52]� R.R. Lutz, “Targeting Safety-Related Errors During Software Re-
quirements Analysis,” Proc. First ACM SIGSOFT Symp. Founda-
tions of Software Eng., Los Angeles, Dec. 1993.

[53]� R.R. Lutz and H.-Y. Shaw, “Applying the SCR* Requirements
Toolset to DS-1 Fault Protection,” Technical Report JPL-D15198,
Jet Propulsion Laboratory, Pasadena, Calif., Dec. 1997.

[54]� D. Mandrioli, A. Morzenti, M. Pezze, P. SanPietro, and S. Silva, “A
Petri Net and Logic Approach to the Specification and Analysis of
Real-Time Systems,” C. Heitmeyer and Dino Mandrioli, eds.,
Formal Methods for Real-Time Computing, Trends in Software. Chich-
ester, England: John Wiley & Sons Ltd, 1996.

[55]� Z. Manna and A. Pnueli, The Temporal Logic of Reactive and Concur-
rent Systems. Springer-Verlag, 1991.

[56]� K.L. McMillan, Symbolic Model Checking. Englewood Cliffs, N.J.:
Kluwer Academic, 1993.

[57]� S. Meyer and S. White, “Software Requirements Methodology
and Tool Study for A6-E Technology Transfer,” technical report,
Grumman Aerospace Corp., Bethpage, New York, July 1983.

[58]� S. Miller, “Specifying the Mode Logic of a Flight Guidance Ssys-
tem in CoRE and SCR,” Proc. Second ACM Workshop Formal Meth-
ods in Software Practice (FMSP’98), 1998.

[59]� J. Ostroff, “A Visual Toolset for the Design of Real-Time Discrete-
Event Systems,” IEEE Trans. Control Systems Technology, vol. 5, no.
3, pp. 320–337, May 1997.

[60]� D.L. Parnas, G.J.K. Asmis, and J. Madey, “Assessment of Safety-
Critical Software in Nuclear Power Plants,” Nuclear Safety, vol. 32,
no. 2, pp. 189–198, Apr.-June 1991.

[61]� D.L. Parnas and J. Madey, “Functional Documentation for Com-
puter Systems,” Science of Computer Programming, vol. 25, no. 1,
pp. 41–61, Oct. 1995.

[62]� T. Sreemani and J.M. Atlee, “Feasibility of Model Checking Soft-
ware Requirements,” Proc. 11th Ann. Conf. Computer Assurance
(COMPASS‘96), Gaithersburg, Md., June 1996.

[63]� J. Sutton, personal communication, Sept.1997.
[64]� U.S. General Accounting Office, “Mission Critical Systems: De-

fense Attempting to Address Major Software Challenges,” Tech-
nical Report GAO/IMTEC-93-13, U.S. General Accounting Office,
Washington, D.C., Dec. 1992.

[65]� M. Weiser, “Program Slicing,” IEEE Trans. Software Eng., vol. 10,
no. 4, pp. 352–357, July 1984.

[66]� M. Young, “How to Leave out Details: Error Preserving Abstrac-
tions of State-Space Models,” Proc. ACM Conf. Software Testing,
Analysis and Verification, 1988.



948 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING,  VOL.  24,  NO.  11,  NOVEMBER  1998

Constance Heitmeyer holds MA degrees  in
mathematics and history from the University of
Michigan. She heads the Software Engineering
Section of NRL’s Center for High Assurance
Computer Systems. Before assuming her cur-
rent position at NRL, she was a visiting scientist
at the NATO Undersea Research Center in La
Spezia, Italy. She served in 1996 as program
co-chair for the 11th Annual COMPASS Confer-
ence and in 1997 as general chair for the Third

IEEE Symposium on Requirements Engineering; serves as an associ-
ate editor for the Journal of Real-Time Computing Systems; and co-
edited a book in 1996 entitled Formal Methods for Real-Time Comput-
ing. Her research interests are in formal methods, requirements, and
real-time computing.

James Kirby, Jr. holds a master of software
engineering from the Wang Institute of Graduate
Studies. He is a member of the Software Engi-
neering Section of NRL’s Center for High As-
surance Computer Systems. Prior to coming to
NRL, Kirby was on the technical staff of the
Software Productivity Consortium and on the
faculty technical staff at the Wang Institute.
While at the Software Productivity Consortium,
he was a developer of CoRE, the Consortium
Requirements Engineering Method. His re-

search interests include software requirements and design methods
and software process.

Bruce Labaw holds an MS degree in computer
science from the University of Maryland. He is a
member of the Software Engineering Section of
NRL’s Center for High Assurance Computer
Systems. He conducts and supervises research
in software engineering of hard real-time com-
puter systems and supports the transition of this
technology to the Navy. He previously worked
on the NRL Software Cost Reduction project,
which documented the requirements of the
Operational Flight Program of the Navy’s A-7

aircraft. His research interests are in formal methods, real-time com-
puting, and software requirements.

Myla Archer holds an AM degree in mathe-
matics from Harvard University and a PhD
degree in computer science from the Univer-
sity of Illinois at Urbana-Champaign. She is a
computer scientist in the Software Engineering
Section of NRL’s Center for High Assurance
Computer Systems. Prior to coming to NRL,
she taught mathematics at Wheaton College in
Norton, Massachusetts, and served on the
Computer Science faculty of the University of
California, Davis. She was general chair of the

1991 Tutorial and Workshop on the HOL Theorem Proving System
and Its Applications, and doctoral consortium chair of the Third IEEE
Symposium on Requirements Engineering in 1997. Her research
interests include formal methods, verification, requirements, and
real-time computing.

Ramesh Bharadwaj holds the BE, ME, and
PhD degrees in electrical engineering. He is a
computer engineer in the Software Engineering
Section at the Naval Research Laboratory in
Washington, D.C. He has hands-on experience
in systems development, having worked in
industry as a hardware engineer, senior soft-
ware engineer, and senior systems program-
mer. He has also spent two years managing
software development projects. He has held

research and development positions at the Philips Research Laborato-
ries in Eindhoven; the Tata Institute of Fundamental Research in Bom-
bay; Stanford University; and AT&T Bell Laboratories in Murray Hill,
New Jersey. His research interests include tools and methods for soft-
ware engineering, model checking, and decision procedures.


